Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
09. Аркулис (Приборы и методы вихретокового контроля).docx
Скачиваний:
68
Добавлен:
19.06.2018
Размер:
773.32 Кб
Скачать

2 Вопрос Виды магнетизма

Магнетизм (от греческогоmagnetis — магнит), проявляется в макромасштабах как взаимодействие между электрическими токами, между токами и магнитами (то есть телами смагнитным моментом) и между магнитами. В наиболее общем виде М. можно определить как особую форму материальных взаимодействий, возникающих между движущимися электрически заряженными частицами. Передача магнитного взаимодействия, реализующая связь между пространственно-разделёнными телами, осуществляется особым материальным носителем —магнитным полем. Оно представляет собой наряду с электрическим полем одно из проявлений электромагнитной формы движения материи. Между магнитным и электрическим полями нет полной симметрии. Источниками электрического поля являются электрические заряды, которыми обладают элементарные частицы — электроны, протоны, мезоны и другие. Аналогичных магнитных зарядов пока не наблюдали в природе, хотя гипотезы об их существовании высказывались.

Источником магнитного поля является движущийся электрический заряд, то есть электрический ток. В атомных масштабах для электронов и нуклонов (протонов, нейтронов) имеются два типа микроскопических токов — орбитальные, связанные с переносным движением центра тяжести этих частиц, и спиновые, связанные с внутренними степенями свободы их движения.

Вещества, в которых атомные магнитные моменты расположены параллельно друг другу, называются ферромагнетиками; соответственноантиферромагнетиками называются вещества, в которых соседние атомные моменты расположены антипараллельно. Сложность атомной структуры веществ, построенных из огромного числа атомов, приводит к практически неисчерпаемому разнообразию их магнитных свойств. При рассмотрении магнитных свойств веществ для последних употребляют общий термин — «магнетики». Взаимосвязь магнитных свойств веществ с их немагнитными свойствами (электрическими, механическими, оптическими и т.д.) позволяет очень часто использовать исследования магнитных свойств как источник информации о внутренней структуре микрочастиц и тел макроскопических размеров.

Парамагнетизм

Парамагнетизм – свойство тел, помещенных во внешнее магнитное поле, намагничиваться (приобретать магнитный момент) в направлении, совпадающем с направлением этого поля. Т. о., внутри парамагнитного тела (парамагнетика) к действию внешнего поля прибавляется действие возникшейнамагниченностиJ. В этом отношении П. противоположендиамагнетизму, при котором возникающий в теле под действием поля магнитный момент ориентирован навстречу направлению напряжённости внешнего магнитного поля Н. Поэтому парамагнитные тела притягиваются к полюсам магнита (откуда название «П.»), а диамагнитные — отталкиваются. Характерным для парамагнетиков свойством намагничиваться по полю обладают такжеферромагнетикииантиферромагнетики. Однако в отсутствие внешнего поля намагниченность парамагнетиков равна нулю и они не обладают магнитной структурой(взаимной упорядоченной ориентацией магнитных моментов атомов), в то время как при Н = 0 ферро- и антиферромагнетики сохраняют магнитную структуру.  Существование у атомов (ионов) магнитных моментов, обусловливающих П. веществ, может быть связано с движением электронов в оболочке атома (орбитальный П.), со спиновым моментом самих электронов (спиновый П.), с магнитными моментами ядер атомов (ядерный П.). Поскольку движение электронов проводимости металлов практически не меняется при изменении температуры, П., обусловленный электронами проводимости, от температуры не зависит.

Диамагнетизм

Диамагнетизм один из видов магнетизма; проявляется в намагничивании вещества навстречу направлению действующего на него внешнего магнитного поля.

 Д. свойствен всем веществам. При внесении какого-либо тела в магнитное поле в электронной оболочке каждого его атома, в силу закона электромагнитной индукции, возникают индуцированные круговые токи, т. е. добавочное круговое движение электронов вокруг направления магнитного поля. Эти токи создают в каждом атоме индуцированный магнитный момент, направленный, согласно правилу Ленца, навстречу внешнему магнитному полю независимо от того, имелся ли первоначально у атома собственный магнитный момент или нет и как он был ориентирован. У чисто диамагнитных веществ электронные оболочки атомов (молекул) не обладают постоянным магнитным моментом. Магнитные моменты, создаваемые отдельными электронами в таких атомах, в отсутствие внешнего магнитного поля взаимно скомпенсированы. В частности, это имеет место в атомах, ионах и молекулах с целиком заполненными электронными оболочками, например, в атомах инертных газов, в молекулах водорода, азота.

Ферромагнетизм

Ферромагнетизм, одно из магнитных состояний кристаллических, как правило, веществ, характеризуемое параллельной ориентациеймагнитных моментоватомных носителей магнетизма. Параллельная ориентация магнитных моментов устанавливается при температурахТниже критическойи обусловлена положительным значением энергии меж электронногообменного взаимодействия.Ферромагнитная упорядоченность магнитных моментов в кристаллах (атомнаямагнитная структура – коллинеарная или неколлинеарная) непосредственно наблюдается и исследуется методами магнитнойнейтронографии.Вещества, в которых установился ферромагнитный порядок атомных магнитных моментов, называютферромагнетиками.

Магнитные и другие физические свойства ферромагнетиков обладают специфической зависимостью от температуры Т.Намагниченность насыщенияJsимеет наибольшее значение приТ = 0 К и монотонно уменьшается до нуля приТ = .

Необходимым условием Ф. является наличие постоянных (независящих от Н) магнитных (спиновых или орбитальных, или обоих вместе) моментов электронных оболочек атомов ферромагнетиков. Это выполняется в кристаллах, построенных из атомов переходных элементов (атомов с недостроенными внутренними электронными слоями).

Ферримагнетизм

Ферримагнетизм – магнитное состояние вещества, при котором элементарные магнитные моменты, ионов, входящих в состав вещества (ферримагнетика), образуют две или большее число подсистем – магнитных подрешёток. Каждая из подрешёток содержит ионы одного сорта с одинаково ориентированными магнитными моментами. Магнитные моменты ионов разных подрешёток направлены навстречу друг другу или, в более общем случае, образуют сложную пространственную конфигурацию (например, треугольную). Часто число ионов в одной подрешётке в кратное число раз больше, чем в другой. Самопроизвольная намагниченность J вещества в ферримагнитном состоянии равна векторной сумме намагниченностей всех подрешёток. Ф. можно рассматривать как наиболее общий случай магнитного упорядоченного состояния. С этой точки зренияферромагнетизместь частный случай Ф., когда в веществе имеется только одна подрешётка.

Возникающая ферримагнитная упорядоченность моментов описывается определённой магнитной структурой,т. е. разбиением кристалла на магнитные подрешётки, величиной и направлением векторов их намагниченностей. Магнитная структура может быть определена методами дифракции нейтронов. Образование той или иной магнитной структуры зависит от кристаллической структуры вещества и соотношения величин обменных взаимодействий между различными магнитными ионами. Обменное взаимодействие определяет только взаимную ориентацию намагниченностей подрешёток друг относительно друга. Другой их параметр – ориентация относительно осей кристалла – определяется энергиеймагнитной анизотропии, которая на несколько порядков меньше обменной энергии.