Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
4 курс / 2 семестр / ЭКЗАМЕНЫ / ГИС. Шпоры.doc
Скачиваний:
239
Добавлен:
23.07.2018
Размер:
278.02 Кб
Скачать

14. Оптико-электронные космические системы наблюдения. Лидары.

Важным фактором повышения эффективности ГИС и добавления элемента времени в геоизображения является использование оперативной информации из оптико-электронных космических систем наблюдения. Спутниковые данные позволяют в режиме реального времени в течение месяцев и даже многих лет вести наблюдения за состоянием земной поверхности.

Используемый в дистанционном зондировании Земли участок спектра электромагнитных волн делится на несколько диапазонов: оптический, тепловой и радиоволновой. В оптическом диапазоне регистрируется отраженное солнечное излучение, в тепловом – излучение самих объектов, в радиоволновом – отраженное от объектов излучение активного сенсора (радиолокатор бокового обзора или с синтезированной апертурой антенны). Съемка земной поверхности (касается оптического и теплового диапазонов) может осуществляться как в широких участках спектра (панхроматическая съемка), так и в многочисленных узких спектральных зонах (мульти- и гиперспектральная съемка). Панхроматические изображения имеют, обычно, более высокое пространственное разрешение, а многоспектральные содержат уникальную информацию о спектральной отражательной или излучательной способности наблюдаемых объектов. Для извлечения нужной информации из данных дистанционного зондирования (ДДЗ) требуются специальные средства обработки и анализа изображений. Полным инструментарием по интерпретации изображений для ГИС обладает программный комплекс ERDAS IMAGINE, представляющий уникальные возможности по коррекции и анализу данных космической и аэросъемки.

Использование космоснимков не только полезно при уточнении векторных карт, но и удобно для их последующего совместного использования с цифровой картой в качестве основы тематических материалов (например, градостроительные планы или геологические схемы и т.д.). В таком сочетании создается наиболее реалистичный визуальный образ пространства, дающий достоверную информацию о точности и актуальности пространственных данных.

В настоящее время для сбора данных о топографии местности все шире используются бортовые лазерные сканеры – лидары. Лидары устанавливаются на летательных аппаратах и обеспечивают прямое измерение профиля земной поверхности с высокой точностью. Сканер вырабатывает высокочастотный лазерный импульс и принимает отраженный от земли сигнал с задержкой и интенсивностью, параметры которых зависят от высоты и качества отражающей поверхности. Далее сигнал обрабатывается с учетом данных бортового GPS-приемника внутренними подсистемами сканера.

Данные LIDAR отображаются в ГИС в виде наборов точек, гридов или изолиний. Например, для представления данных лидара о высоте лучше подходит формат грид, в котором картируемая область делится на ячейки, и каждой ячейке присваивается значение высоты поверхности над уровнем моря. Набор данных в виде грида обеспечивает более равномерное и непрерывное отображений поверхности и предоставляет лучшие возможности для анализа, управления и отображения геоданных.