Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Konspekt_lektsy_kursa_Algebra_i_teoria_chisel_d....doc
Скачиваний:
55
Добавлен:
15.11.2018
Размер:
1.26 Mб
Скачать

§4 Кольцо.

Определение. Пусть К непустое множество с двумя алгебраическими операциями: сложением и умножением. К называется кольцом, если выполняются следующие условия:

1) К абелева группа относительно сложения;

2) умножение ассоциативно;

3) умножение дистрибутивно относительно сложения.

Если умножение коммутативно, то К называют коммутативным кольцом. Если относительно умножения есть нейтральный элемент, то К называют кольцом с единицей.

Примеры.

1) ,+, — коммутативное кольцо с единицей.

2) 2,+, — коммутативное кольцо без единицы.

3) Pn ,+,  — не коммутативное кольцо с единицей.

Простейшие свойства колец.

1. Так как К абелева группа относительно сложения, то на К переносятся простейшие свойства групп.

2. Умножение дистрибутивно относительно разности:

a(b-c)=ab-ac.

Доказательство. Т.к. ab-ac+ac=ab и a(b-c)+ac=a((b-c)+c)=a(b-c+c)=ab, то a(b-c)=ab-ac.

3. В кольце могут быть делители нуля, т.е. ab=0, но отсюда не следует, что a=0 b=0.

Например, в кольце матриц размера 22, существуют элементы не равные нулю такие, что их произведение будет нуль:

,где — играет роль нулевого элемента.

4. a·0=0·а=0.

Доказательство. Пусть 0=b-b. Тогда a(b-b)=ab-ab=0. Аналогично 0·а=0.

5. a(-b)=(-a)·b=-ab.

Доказательство: a(-b)+ab=a((-b)+b)=a·0=0.

6. Если в кольце К существует единица и оно состоит более, чем из одного элемента, то единица не равна нулю, где 1─ нейтральный элемент при умножении; 0 ─ нейтральный элемент при сложении .

Доказательство (от противного). Предположим противное. Пусть 1=0. Возьмем  aК, тогда a=a*1=a*0=0a=0. Значит кольцо состоит из одного элемента. Противоречие с условием теоремы, ибо,|K|≥2.

7. Пусть К кольцо с единицей, тогда множество обратимых элементов кольца образуют группу относительно умножения, которую называют мультипликативной группой кольца K и обозначают K*.

Доказательство.

К*. Пусть a K* и b K*. Докажем, что ab K*. В самом деле

(ab)-1=b-1a-1K*, ибо a-1,b-1K*.

§5. Поле

Определение. Коммутативное кольцо с единицей, содержащее не менее двух элементов, в котором любой отличный от нуля элемент обратим, называется полем.

Простейшие свойства поля

1. Т.к. поле — кольцо, то все свойства колец переносятся и на поле.

2. В поле нет делителей нуля ,т.е. если ab=0 ,то a=0 или b=0.

Доказательство.

Если a0 ,то  a-1 . Рассмотрим a-1 (ab)=( a-1 a)b=0 , а если a0 ,то b=0, аналогично если b

3. Уравнение вида ax=b, a0, b – любое, в поле имеет единственное решение x= a-1b, или х=b/a.

Решение этого уравнения называется частным.

Примеры.

1) PC, P — числовое поле.

2) P={0;1};

3) P={0;1;2} .

Характеристика поля

Не все свойства числовых полей сохраняются в случае произвольного поля. Так, складывая число 1 само с собою несколько раз, т.е. беря любое целое положительное кратное единицы, мы никогда не получим нуля. Если же мы будем брать целые кратные единицы в каком-либо конечном поле, то среди них непременно будут равные, т.к. это поле обладает лишь конечным числом различных элементов. Если все целые кратные единицы поля P являются различными элементами поля P, т.е. k1m1(здесь и далее за 1 обозначен элемент поля = единице) при km, то говорят, что поле P имеет характеристику нуль(char P=0);таковы, например, все числовые поля. Если существуют такие целые k и m, что k>m, но в P имеет место равенство k1=m1, то (k-m) 1=0, т.е. в P существует такое положительное кратное единицы, которое оказывается равным нулю. В этом случае P называется полем положительной характеристики. Характеристикой поля в случае поля положительной характеристики называют наименьшее натуральное р, что единица сложенная р раз дает 0.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]