Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Физика-коллоквиум О_о.doc
Скачиваний:
188
Добавлен:
19.11.2018
Размер:
483.33 Кб
Скачать
  1. Комплексная форма гармонических колебаний. Сложение гармонических колебаний одинаковых и близких частот. Биения.

Гармонические колебания величины s описываются уравнение типа s =A cos (w0 t +j)

w0 - круговая (циклическая) частота,

j - начальная фаза колебания в момент времени t=0

(w0 t +j) - фаза колебания в момент времени t

Согласно формуле Эйлера, для комплексных чисел где -мнимая единица. Поэтому уравнение гармонического колебания можно записать в

комплексной форме: Бие́ния — явление, возникающее при наложении двух гармонических колебаний близкой частоты и выражающееся в периодическом уменьшении и увеличении амплитуды суммарного сигнала. Частота изменения амплитуды суммарного сигнала равна разности частот двух исходных сигналов.

Биения возникают от того, что один из двух сигналов постоянно отстаёт от другого по фазе и в те моменты, когда колебания происходят синфазно, суммарный сигнал оказывается усилен, а в те моменты, когда два сигнала оказываются в противофазе, они взаимно гасят друг друга. Эти моменты периодически сменяют друг друга по мере того как нарастает отставание.

  1. Гармонический осциллятор. Уравнение динамики гармонических колебаний. Примеры гармонических осцилляторов: пружинный, физический и математический маятники.

Гармонический осциллятор — это система, которая при смещении из положения равновесия испытывает действие возвращающей силы , пропорциональной смещению :

Динамика простого гармонического движения. Для колебания в одномерном пространстве, учитывая Второй закон Ньютона (F = m d²x/dt²) и закон Гука (F = −kx, как описано выше), имеем линейное дифференциальное уравнение второго порядка: где m — это масса тела, x — его перемещение относительно положения равновесия, k — постоянная (коэф. жесткости пружины). Решение этого дифференциального уравнения является синусоидальным; одно из решений таково: x(t) = Acos(ωt + φ)

Примеры:

Груз на пружине. Масса m, прикреплённая к пружине с постоянной жёсткостью k является примером простого гармонического движения в пространстве. Формула показывает, что период колебаний не зависит от амплитуды и ускорения свободного падения.

Физический маятник —твёрдое тело, совершающее колебания в поле каких-либо сил относительно точки, не являющейся центром масс этого тела, или неподвижной оси, перпендикулярной направлению действия сил и не проходящей через центр масс этого тела.

Математи́ческий ма́ятник —механическую систему, состоящую из материальной точки, находящейся на невесомой нерастяжимой нити или на невесомом стержне в однородном поле сил тяготения. Период малых собственных колебаний математического маятника длины L неподвижно подвешенного в однородном поле тяжести с ускорением свободного падения g равен

  1. Затухающие колебания. Коэффициент затухания, время релаксации. Логарифмический декремент затухания.

Затуханием колебаний называется постепенное ослабление колебаний с течением времени, обусловленное потерей энергии колебательной системой. Бесконечно длящийся процесс вида в природе невозможен. Декрементом затухания называется отношение амплитуды затухающих колебаний в некоторый момент времени t к амплитуде тех же колебаний на период позже t + T: A(t)/A(t+T)=eβT Декремент затухания характеризует, во сколько раз уменьшается амплитуда колебаний за один период.

Период затухающих колебаний определяется формулой: При незначительном затухании период колебаний практически равен…. ---Такое отношение амплитуд называется декрементом затухания, а его натуральный логарифм - логарифмическим декрементом затухания:

Логарифмический декремент затухания обратен по величине числу колебаний, совершаемых за то время, за которое амплитуда уменьшается в «e» раз. Помимо рассмотренных величин для характеристики колебательной системы употребляется величина

называемая добротностью колебательной системы. Добротность пропорциональна числу колебаний, совершаемых системой за то время, за которое амплитуда колебаний уменьшается в «e» раз.

время релаксации — время, за которое амплитуда колебаний уменьшится в e раз.

Добротность колебательной системы Q характеризует относительное изменение энергии за один период. Добротность пропорциональна отношению энергии W(t) системы в некоторый момент времени t к изменению энергии W(t) – W(t + t) за последующий период T. Q=2π (W(t)/W(t) – W(+T)) ///////