Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Шпоры ВССиТ.doc
Скачиваний:
14
Добавлен:
11.12.2018
Размер:
315.39 Кб
Скачать

Методы доступа к среде передачи данных (методы доступа к каналам связи)

В локальных сетях, использующих разделяемую среду передачи данных (например, локальные сети с топологией шина и физическая звезда), актуальным является доступ рабочих станций к этой среде, так как если два ПК начинают одновременно передавать данные, то в сети происходит столкновение. Для того чтобы избежать этих столкновений необходим специальный механизм, способный решить эту проблему. Шинный арбитраж - это механизм призванный решить проблему столкновений. Он устанавливает правила, по которым рабочие станции определяют, когда среда свободна, и можно передавать данные. Существуют два метода шинного арбитража в локальных сетях:

 обнаружение столкновений

 передача маркера

Обнаружение столкновений Когда в локальных сетях работает метод обнаружения столкновений, компьютер сначала слушает, а потом передает. Если компьютер слышит, что передачу ведет кто-то другой, он должен подождать окончания передачи данных и затем предпринять повторную попытку. В этой ситуации (два компьютера, передающие в одно и то же время) система обнаружения столкновений требует, чтобы передающий компьютер продолжал прослушивать канал и, обнаружив на нем чужие данные, прекращал передачу, пытаясь возобновить ее через небольшой (случайный) промежуток времени. Прослушивание канала до передачи называется “прослушивание несущей” (carrier sense), а прослушивание во время передачи — обнаружение столкновений (collision detection). Компьютер, поступающий таким образом, использует метод, называющийся “обнаружение столкновений с прослушиванием несущей”, сокращенно CSCD.

Передача маркера в локальных сетях

Системы с передачей маркера работают иначе. Для того чтобы передать данные, компьютер сначала должен получить разрешение. Это значит, он должен “поймать” циркулирующий в сети пакет данных специального вида, называемый маркером. Маркер перемещается по замкнутому кругу, минуя поочередно каждый сетевой компьютер. Каждый раз, когда компьютер должен послать сообщение, он ловит и держит маркер у себя. Как только передача закончилась, он посылает новый маркер в путешествие дальше по сети. Такой подход дает гарантию, что любой компьютер рано или поздно получит право поймать и удерживать маркер до тех пор, пока его собственная передача не закончится.

Билет 16.

1. ПЕРИФЕРИЙНЫЕ УСТРОЙСТВА ЭВМ

внешние устройства ЭВМ, - устройства, предназначенные для внешней машинной обработки информации (в отличие от преобразований информации, осуществляемых центральным процессором). По роду выполняемых операций П. у. подразделяются на след. группы: устройства подготовки данных, служащие для занесения информации на промежуточные носители данных (перфорационные карты, перфорационные ленты, магнитные ленты, магнитные диски и др.); устройства ввода - для считывания информации и её преобразования в кодовую последовательность электрич. сигналов, подлежащих передаче в центральный процессор; устройства вывода - для регистрации результатов обработки информации или их отображения (дисплей, алфавитно-цифровое печатающее устройство, графопостроитель и др.); устройства хранения больших объёмов информации (запоминающие устройства на магн. лентах, дисках); устройства передачи информации на большие расстояния, обеспечивающие взаимодействие многих пользователей с ЭВМ (терминалы, аппаратура передачи данных и др.).

2. Интерне́т (произносится [интэрнэ́т]; англ. Internet) — всемирная система объединённых компьютерных сетей, построенная на использовании протокола IP и маршрутизации пакетов данных. Интернет образует глобальное информационное пространство, служит физической основой для Всемирной паутины (World Wide Web (WWW) и множества других систем (протоколов) передачи данных. Часто упоминается как Всемирная сеть и Глобальная сеть, в обиходе иногда употребляют сокращённое наименование Ине́т.

В настоящее время, когда слово «Интернет» употребляется в обиходе, чаще всего имеется в виду Всемирная паутина и доступная в ней информация, а не сама физическая сеть.

К середине 2008 года число пользователей, регулярно использующих Интернет, составило около 1,5 млрд человек (около четверти населения Земли).[1] Вместе с подключёнными к нему компьютерами, Интернет служит основой для развития информационного общества.

Билет 17.

1. клавиатура монитор мышь принтер сканер модем стример сканер и др.

2. Глобальная компьютерная сеть, ГКС (англ. Wide Area Network, WAN) — компьютерная сеть, охватывающая большие территории и включающая в себя большое число компьютеров.

ГКС служат для объединения разрозненных сетей так, чтобы пользователи и компьютеры, где бы они ни находились, могли взаимодействовать со всеми остальными участниками глобальной сети.

Некоторые ГКС построены исключительно для частных организаций, другие являются средством коммуникации корпоративных ЛВС с сетью Интернет или посредством Интернет с удалёнными сетями, входящими в состав корпоративных. Чаще всего ГКС опирается на выделенные линии, на одном конце которых маршрутизатор подключается к ЛВС, а на другом концентратор связывается с остальными частями ГКС. Основными используемыми протоколами являются TCP/IP, SONET/SDH, MPLS, ATM и Frame relay. Ранее был широко распространён протокол X.25, который может по праву считаться прародителем Frame relay. – WiKi.

Билет 18.

1. Программное обеспечение условно можно разделить на 3 класса: системное ПО, прикладное  ПО и инструментальное ПО.

 Системное программное обеспечение, в свою очередь, состоит из базового ПО и сервисного ПО.

Базовое ПО поставляется вместе с компьютером и обеспечивает его работоспособность. В состав базового ПО входит операционная система, операционная оболочка и сетевые программные средства.

Операционная система предназначена:

для запуска и нормальной работы компьютера, для функционирования других программ на компьютере, для диагностики и контроля работоспособности блоков и узлов компьютера, для выполнения других вспомогательных технологических процессов. В настоящее время разработано большое количество ОС, различающихся по возможностям их функционирования: в режимах: одно- и многопользовательских, одно- и многозадачных, поддерживающих сетевые режимы и др. Широкое применение нашли следующие ОС: Windows, Linux, Mac OS, NetWare, OS/2, Solaris, QNX, MS DOS и др.

2.    Домен - это область пространства иерархических имен сети Интернет, которая обслуживается набором серверов доменных имен (DNS) и централизованно администрируется. Домен идентифицируется именем домена.

   Доменное имя (domain name) — это адрес сетевого соединения, который идентифицирует владельца адреса.

   Регистрация доменов - представляет собой занесение информации о домене и его администраторе в центральную базу данных с целью обеспечения уникальности использования домена, а также получения прав на администрирование домена администратором. Услуга по регистрации домена считается оказанной с момента занесения информации в базу данных. Регистрация домена действует в течение одного года, считая с момента регистрации домена.

В общем понимании, смысл адреса состоит в том, чтобы с гарантией привести любого желающего в определенное место. Например, имея верный почтовый адрес человека, вы можете отправиться к нему в гости, не боясь при этом, что вы попадете к кому-нибудь другому. Аналогичным образом обстоит дело и с адресами в Интернете.

Адреса в Интернет строятся по доменной системе адресации (domain name system, DNS), т. е. каждый адрес состоит из нескольких уровней.

При этом существуют два основных способа адресации: символьный, который, предназначен для использования людьми и численный, основанный на IP-адресах и используемый компьютером.

Билет 19.

1. Классификация архитектур ВС

 Вычислительные машины за свою полувековую историю прошли стремительный и впечатляющий путь, отмеченный частыми сменами поколений ЭВМ. В этом процессе развития можно выявить целый ряд закономерностей:

 · весь период развития средств электронной вычислительной техники (ЭВТ) отмечен доминирующей ролью классической структуры ЭВМ (структуры фон Неймана), основанной на методах последовательных вычислений;

 · основным направлением совершенствования ЭВМ является неуклонный рост производительности (быстродействия) и интеллектуальности вычислительных средств;

 · совершенствование ЭВМ осуществлялось в комплексе (элементно-конструкторская база, структурно-аппаратурные решения, системно-программный и пользовательский, алгоритмический уровни);

 · в настоящее время наметился кризис классической структуры ЭВМ, связанный с исчерпанием всех основных идей последовательного счета. Возможности микроэлектроники также не безграничны, давление пределов ощутимо и здесь.

 

Дальнейшее поступательное развитие вычислительной техники напрямую связано с переходом к параллельным вычислениям, с идеями построения многопроцессорных систем и сетей, объединяющих большое количество отдельных процессоров и (или) ЭВМ. Здесь появляются огромные возможности совершенствования средств вычислительной техники. Но следует отметить, что при несомненных практических достижениях в области параллельных вычислений до настоящего времени отсутствует их единая теоретическая база.

 Термин вычислительная система появился в начале - середине 60-х гг. при появлении ЭВМ III поколения. Это время знаменовалось переходом на новую элементную базу - интегральные схемы. Следствием этого явилось появление новых технических решений: разделение процессов обработки информации и ее ввода-вывода, множественный доступ и коллективное использование вычислительных ресурсов в пространстве и во времени. Появились сложные режимы работы ЭВМ - многопользовательская и многопрограммная обработка. Отражая эти новшества, и появился термин “вычислительная система”. Он не имеет единого толкования в литературе, его иногда даже используют применительно к однопроцессорным ЭВМ. Однако общим здесь является подчеркивание возможности построения параллельных ветвей в вычислениях, что не предусматривалось классической структурой ЭВМ. Под вычислительной системой (ВС) будем понимать совокупность взаимосвязанных и взаимодействующих процессоров или ЭВМ, периферийного оборудования и программного обеспечения, предназначенную для подготовки и решения задач пользователей. Отличительной особенностью ВС по отношению к ЭВМ является наличие в них нескольких вычислителей, реализующих параллельную обработку. Создание ВС преследует следующие основные цели:

 повышение производительности системы за счет ускорения процессов обработки данных, повышение надежности и достоверности вычислений, предоставление пользователям дополнительных сервисных услуг и т.д.

2. Интернет выполняет две основные функции: информационную и коммуникационную.

Информационная функция позволяет потребителям быстро получать затребованную информацию. Это могут быть научные знания, техническая документация, книги, справочники, статьи, сообщения, чертежи, схемы, рисунки, видеоматериалы, звукозаписи и многое другое.

Билет 20.

1. Большие ЭВМ за рубежом называют мэйнфреймами (Mainframe). К мэйнфреймам относят компьютеры, имеющие следующие характеристики:

- производительность не менее 100MIPS (Million Instructions Per Second - миллион инструкций (команд) над числами с фиксированной запятой (точкой) в секунду;

основную память емкостью от 64 до 10000 Мбайт;

внешнюю память не менее 50Гбайт;

многопользовательский режим работы (обслуживают одновременно от . 16 до 1000 пользователей).

Основные направления эффективного применения мэйнфреймов - это решение научно-технических задач, работа в вычислительных системах с пакетной обработкой информации, работа с большими базами данных, управление вычислительными сетями и их ресурсами. Последнее направление - использование мэйнфреймов в качестве больших серверов вычислительных сетей. Родоначальником современных больших ЭВМ является фирма IBM (International Business Machines международные бизнес машины).

К числу больших отечественных ЭВМ следует отнести компьютеры серии «ЕС».

Малые ЭВМ (миниЭВМ) - надежные, недорогие и удобные в эксплуатации компьютеры, обладающие несколько более низкими по сравнению с мэйнфреймами возможностями.

Они обладают следующим характеристиками:

производительность - до 100 MIPS;

емкость основной памяти - 4 52 Мбайт;

емкость дисковой памяти - 2 100 Гбайт;

число поддерживаемых пользователей 16 512.

Все модели малых ЭВМ разрабатываются на основе микропроцессорных наборов интегральных микросхем, 16-, 32-, 64-разрядных микропроцессоров. Основные ихособенности: широкий диапазон производительности в конкретных условиях применения; аппаратная реализация большинства системных функций ввода-вывода информации; простая реализация микропроцессорных и многомашинных систем; высокая скорость обработки прерываний; возможность работы с форматами данных различной длины.

2. Локальные сети сосредоточены на территории не более 1-2 км; построены с использованием дорогих высококачественных линий связи, которые позволяют, применяя более простые методы передачи данных, чем в глобальных сетях, достичь высоких скоростей обмена данными порядка 100 Мбит/с. Предоставляемые услуги отличаются широким разнообразием и обычно предусматривают реализацию в режиме подключения «on-line».

В конце 80-х годов локальные и глобальные сети имели существенные отличия по протяженности и качеству линий связи, сложности методов передачи данных, скорости обмена данными, разнообразию услуг и масштабируемости. В дальнейшем в результате тесной интеграции локальных и глобальных сетей произошло взаимопроникновение соответствующих технологий.

Одним из проявления сближения локальных и глобальных сетей является появление сетей масштаба большого города, занимающих промежуточное положение между локальными и глобальными сетями. Региональные или городские сети предназначены для обслуживания территории крупного города. При достаточно больших расстояниях между узлами (десятки километров) они обладают качественными линиями связи и высокими скоростями обмена, иногда даже более высокими, чем в традиционных локальных сетях. Они обеспечивают экономическое соединение локальных сетей между собой, а также выход в глобальные сети.

В настоящее время все большее распространение получили «корпоративные сети». Корпоративная сеть (Intranet) – это сеть на уровне компании, предприятия, главным назначением которой является поддержание работы этой компании, предприятия. Пользователями корпоративной сети являются только сотрудники данного предприятия.

Тенденция сближения различных типов сетей характерна не только для локальных и глобальных компьютерных сетей, но и для телекоммуникационных сетей других типов. К телекоммуникационным сетям, кроме компьютерных, относятся телефонные сети, радиосети и телевизионные сети. Во всех них в качестве ресурса, предоставляемого клиентам, выступает информация.

Телефонные сети оказывают «интерактивные услуги» (interactive services), так как два абонента, участвующие в разговоре (или несколько абонентов, если это конференция или циркулярная связь), попеременно проявляет активность.

Радиосети и телевизионные оказывают «широковещательные услуги» (broadcast service) – при этом информация распространяется только в одну сторону – из сети к абонентам, по схеме «один-ко-многим» (point-to-multipoint).

Конвергенция телекоммуникационных сетей идет по многим направлениям.

Прежде всего, наблюдается «сближение видов услуг»,

Билет 21.

1. По типу вычислительные системы можно разделить на многомашинные и многопроцессорные.

В эпоху централизованного использования ЭВМ с пакетной обработкой информации пользователи предпочитали приобретать компьютеры, на которых можно было бы решать почти все классы их задач. Однако принцип централизованной обработки данных не отвечал всем требованиям к надежности процесса обработки, затруднял развитие систем и не мог обеспечить необходимые временные параметры при диалоговой обработке данных в многопользовательском режиме. Кратковременный выход их строя центральной ЭВМ приводит к негативным последствиям, так как приходится дублировать функции центральной ЭВМ.

Многомашинные вычислительные системы (ММС) появились исторически первыми. Уже при использовании ЭВМ первых поколений возникали задачи повышения производительности, надежности и достоверности вычислений. Для этих целей используется комплекс машин, схематически показанный на рис. 3 «а».

Положения 1 и 3 электронного ключа (ЭК) обеспечивает режим повышенной надежности для периферийных устройств (Пф.У). При этом одна из машин выполняет вычисления. А другая находится в «горячем» или «холодном» резерве, то есть в готовности заменить основную ЭВМ. Положение 2 электронного ключа соответствует случаю, когда обе машины обеспечивают параллельный режим вычислений.

Здесь возможны две ситуации:

обе машины решают одну и ту же задачу и периодически сверяют результаты решения. Тем самым обеспечивается режим повышенной достоверности, уменьшается вероятность появления ошибок в результатах вычислений;

обе машины работают параллельно, но обрабатывают собственные потоки заданий. Возможность обмена информацией между машинами сохраняется. Этот вид работы относится к режиму повышенной производительности.

Основные отличия ММС заключаются в организации связи и обмена информацией между ЭВм комплекса. Каждая из них сохраняет возможность автономной работы и управляется собственной операционной системой (ОС).

Многопроцессорные вычислительные системы (МПС) строятся при комплексировании нескольких процессоров (рис. 3 «б»). в качестве общего ресурса они имеют общую оперативную память (ООП). Параллельная работа процессоров и использование ООП обеспечиваются под управлением единой общей операционной системы. По сравнению с ММС здесь достигается наивысшая оперативность взаимодействия вычислителей-процессоров.

По типу ЭВМ или процессоров, используемых для построения ВС, различают однородные и неоднородные системы.

По степени территориальной разобщенности вычислительных модулей ВС делятся на системы совмещенного (сосредоточенного) и распределенного (разобщенного) – рис. 4 типов. Обычно такое деление касается только ММС. Многопроцессорные системы относятся к системам совмещенного типа. Совмещенные и распределенные ММС сильно различаются оперативностью взаимодействия в зависимости от удаленности ЭВМ.

2. Понятие эффективности функционирования компьютерных сетей и методология ее оценки Наиболее общей, интегральной характеристикой любой сложной, тем более человеко-машинной, системы является эффективность ее функционирования, т.е. способность системы достигать поставленную цель в заданных условиях применения и с определенным качеством. Иначе говоря, это комплексное операционное свойство целенаправлен-ного процесса функционирования системы, характеризующее приспособленность этого процесса к достижению цели реализуемой системой операции. Под системой понимается совокупность взаимосвязанных эргатических и неэргатических элементов (аппаратных, программных, информационных средств, обслуживающего персонала, пользователей), непосредственно участвующих в процессе выполнения операции. Операция – это упорядоченная совокупность взаимосвязанных действий, направленных на достижение заданной цели. Цель – это желаемый результат функционирования системы, достижимый в течение определенного времени. Объектом исследования является операция, т.е. процесс применения (функционирования) системы. Применительно к КС под операцией понимается упорядоченная совокупность взаимосвязанных действий эргатических и неэргатических элементов сети, направленных на удовлетворение запросов пользователей. Предмет исследования – это закономерности оптимальной организации процесса функционирования системы, а применительно к компьютерной сети – закономерности оптимальной (или рациональной) организации процессов удовлетворения запросов пользователей. Следует различать понятия «эффективность» и «качество» Показатели эффективности КС В общем случае показатель эффективности функционирования компьютерной сети, как человеко-машинной системы, представляет собой количественно (реже качественно) оцениваемую характеристику с учетом: выходных временных, точностных и надежностных показателей трудовой деятельности человека-оператора (пользователей, управленческого и обслуживающего персонала сети); параметров и характеристик машины (аппаратных, программных и информационных средств сети, рассматриваемых с системных позиций); параметров и характеристик, определяющих условия функционирования сети. Ниже рассматриваются только количественно оцениваемые показатели эффективности КС. Показатели целевой эффективности КС (Wц). Любая компьютерная сеть, используемая той или иной организацией (или отдельными людьми), прямо или опосредованно участвует в достижении целей деятельности этой организации, в решении конкретных задач. Показатели множества Wц предназначены для количественной оценки степени этого участия. С их помощью оценивается эффект (целевой результат), получаемый за счет решения тех или иных прикладных задач с использованием общесетевых ресурсов (аппаратных, программных, информационных), а не с использованием других, менее эффективных, средств.

Билет 22.

1. Универсальной структуры вычислительной системы, одинаково хорошо обрабатывающей задачи любого типа не существует, но можно выделить четыре основных архитектурных признаков вычислительной системы, представленной на рис. 33:

Одиночный роток команд - одиночный поток данных (ОКОД) – Single Instruction Single Data (SISD) - одиночный поток инструкций - одиночный поток данных.

ОКОД структуры реализуют два уровня программного параллелизма: операторы и команды; фазы отдельных команд. Данный тип архитектуры объединяет любые системы в однопроцессорном (одномашинном) варианте.

Одиночный поток команд - множественный поток данных (ОКМД) – Single Instruction Multiple Data (SIMD) - одиночный поток инструкций - множественный поток данных.

ОКМД структуры реализуют циклы и интеграции (повторение математических операций), операторы и команды, фазы отдельных команд программного параллелизма, используя матричные или векторные структуры обработки. В них эффектно решаются задачи матричного исчисления, задачи решения систем алгебраических и дифференциальных уравнений, задачи теории поля, задачи аэродинамики, геодезические задачи, но эти структуры являются дорогостоящими по стоимости и эксплуатации.

Множественный поток команд - одиночный поток данных (МКОД) - Multiple

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]