Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Гистология. Билеты с ответами.docx
Скачиваний:
332
Добавлен:
16.01.2019
Размер:
622.69 Кб
Скачать
  • Эпикард — наружная оболочка сердца, он является висцеральным листком перикарда — сердечной сумки. Эпикард состоит из двух листков: внутреннего слоя, представленного рыхлой волокнистой неоформленной соединительной тканью, и наружного — однослойного плоского эпителия (мезотелий).

  • БИЛЕТ № 9 (мозжечок, кровь)

  • 1. Ядро: структурные компоненты и функциональная роль.

  • 2. Общая характеристика, классификация, источники развития и функциональное значение опорно - трофических тканей.

  • 3. Почки: строение, тканевой состав, этапы развития, особенности кровоснабжения.

  • Нефрон: составные части; гистофизиология, типы нефронов. ЮГА почки.

  • Структурные элементы ядра бывают четко выражены только в определенный период клеточного цикла в интерфазе. В период деления клетки одни структурные элементы исчезают, другие существенно преобразуются.

  • Классификация структурных элементов интерфазного ядра:

  • хроматин;

  • ядрышко;

  • кариоплазма;

  • кариолемма.

  • Хроматин представляет собой вещество, хорошо воспринимающее краситель, откуда и произошло его название. Различают два вида хроматина:

  • эухроматин — рыхлый или деконденсированный хроматин, слабо окрашивается основными красителями;

  • гетерохроматин — компактный или конденсированный хроматин, хорошо окрашивается этими же красителями.

  • По химическому строению хроматин состоит из:

  • дезоксирибонуклеиновой кислоты (ДНК) 40 %;

  • белков около 60 %;

  • рибонуклеиновой кислоты (РНК) 1 %.

  • Ядерные белки представлены формами:

  • щелочными или гистоновыми белками 80—85 %;

  • кислыми белками15—20%.

  • Гистоновые белки связаны с ДНК и образуют полимерные цепи дезоксирибонуклеопротеида (ДНП), которые и представляют собой хроматиновые фибриллы, отчетливо видимые при электронной микроскопии. Ядрышко — сферическое образование (1—5 мкм в диаметре) хорошо воспринимающее основные красители и располагающееся среди хроматина. В одном ядре может содержаться от 1 до 4-х и даже более ядрышек. В молодых и часто делящихся клетках размер ядрышек и их количество увеличены. Микроскопически в ядрышке различают:

  • фибриллярный компонент — локализуется в центральной части ядрышка и представляет собой нити рибонуклеопротеида (РНП);

  • гранулярный компонент — локализуется в периферической части ядрышка и представляет скопление субъединиц рибосом.

  • Кариоплазма состоит из воды, белков и белковых комплексов (нуклеопротеидов, гликопротеидов), аминокислот, нуклеотидов, сахаров. Белки кариоплазмы являются в основном белками-ферментами, в том числе ферментами гликолиза, осуществляющих расщепление углеводов и образование АТФ. Негистоновые (кислые) белки образуют в ядре структурную сеть (ядерный белковый матрикс), которая вместе с ядерной оболочкой принимает участие в создание внутреннего порядка, прежде всего в определенной локализации хроматина. Кариолемма — ядерная оболочка отделяет содержимое ядра от цитоплазмы (барьерная функция), в то же время обеспечивает регулируемый обмен веществ между ядром и цитоплазмой. Ядерная оболочка принимает участие в фиксации хроматина. Кариолемма состоит из двух билипидных мембран — внешней и внутренней ядерной мембраны. В кариолемме имеются поры, диаметром 80—90 нм. В области пор внешняя и внутренняя ядерные мембраны переходят друг в друга. Просвет поры закрыт особым структурным образованием — комплексом поры, который состоит из фибриллярного и гранулярного компонента.

  • Функции ядер соматических клеток:

  • хранение генетической информации, закодированной в молекулах ДНК;

  • репарация (восстановление) молекул ДНК после их повреждения с помощью специальных репаративных ферментов;

  • редупликация (удвоение) ДНК в синтетическом периоде интерфазы;

  • передача генетической информации дочерним клеткам во время митоза;

  • реализация генетической информации, закодированной в ДНК, для синтеза белка и небелковых молекул: образование аппарата белкового синтеза информационной, рибосомальной и транспортной РНК.

  • Функции ядер половых клеток:

  • хранение генетической информации;

  • передача генетической информации при слиянии женских и мужских половых клеток.

  • Ткань — исторически (филогенетически) сложившаяся система клеток и неклеточных структур, обладающая общностью строения, а иногда и происхождения, и специализированная на выполнение определенных функций. В онтогенезе различают следующие этапы развития тканей:

  • I этап топической дифференцировки — презумптивные (предположительные) зачатки тканей оказываются в определенных зонах цитоплазмы яйцеклетки, а затем и зиготы;

  • II этап бластомерной дифференцировки — в результате дробления зиготы презумптивные зачатки тканей оказываются локализованными в разных бластомерах зародыша;

  • III этап зачатковой дифференцировки — в результате гаструляции презумптивные зачатки тканей локализованы в различных участках зародышевых листков;

  • IV этап гистогенез — процесс преобразования зачатков тканей в ткани в результате пролиферации, роста, индукции, детерминации, миграции и дифференцировки клеток.

  • Общепринятой является морфофункциональная классификация, в соответствии с которой выделяют четыре тканевых группы:

  • эпителиальные ткани;

  • соединительные ткани (ткани внутренней среды, опорно-трофические ткани);

  • мышечные ткани;

  • нервные ткани.

  • Регенерация — восстановление клеток, направленное на поддержание функциональной активности данной системы. В регенерации различают такие понятия, как форма регенерации, уровень регенерации, способ регенерации.

  • Функции почек:

  • мочеобразование и мочевыделение, заключается в образовании мочи путем фильтрации плазмы крови и реабсорбции обратно в кровь полезных для организма продуктов обмена. С образующейся в почках мочой выделяются конечные продукты азотистого обмена и ксенобиотики: токсические, лекарственные вещества и другие;

  • поддержание кислотно-щелочного гомеостаза;

  • регуляция водно-солевого обмена;

  • регуляция артериального давления;

  • эндокринная функция и синтез биологически активных веществ — выработка ренина, эритропоэтина, эритрогенина, простагландинов, биогенных аминов, витамина D3 (кальцитрола), калликреина, ряда интерлейкинов;

  • участие в обмене веществ, в первую очередь, в обмене белков и углеводов;

  • участие в работе свертывающей противосвертывающей системы заключающейся в выработке урокиназы (активатора плазминогена, фактора фибринолиза), фактора активации тромбоцитов.

  • Развитие почек начинается на первом месяце эмбриогенеза и продолжается после рождения. Источником развития является промежуточная мезодерма — нефротом. В развитии почек выделяют три стадии: 1. Пронефрос развивается из 8—10 передних сегментов нефротома. 2. На втором месяце эмбриогенеза из 25 пар сегментов нефротома начинает развиваться первичная почка — мезонефрос. 3.Метанефрос (окончательная почка) начинает формироваться на 2-м месяце эмбриогенеза, а к 5-му — уже функционирует. Почка является паренхиматозным зональным органом. Снаружи она покрыта капсулой из плотной волокнистой соединительной ткани и серозной оболочки. От капсулы отходят прослойки рыхлой волокнистой неоформленной соединительной ткани, по которым идут сосуды. Корковое вещество занимает наружную, поверхностную часть почки и мозговыми лучами Феррейна разделяется на отдельные участки. Участки коркового вещества своей нижней частью внедряются между основаниями мозговых пирамид в мозговое вещество в виде колонок Бертини, отделяя пирамиды друг от друга. Мозговое вещество образовано мозговыми пирамидами. Их широкие основания повернуты в сторону коркового вещества, вершины пирамид называются сосочками. Они обращены к малым чашечкам, которые далее продолжаются в большие чашечки и затем в почечную лоханку. Гистофизиология нефрона. Структурно-функциональной единицей почки является нефрон. Он состоит из капсулы и переходящих друг в друга канальцев проксимальных извитого и прямого, дистальных извитого и прямого. В каждой почке около 2 млн. нефронов.

  • По локализации различают:

  • суперфициальные или подкапсульные (около 1 %);

  • корковые (85 %);

  • юкстамедуллярные, или околомозговые (около 14 %).

  • В нефроне выделяют:

  • капсулу (вместе с сосудистым клубочком формирует почечное тельце Мальпиги);

  • проксимальный извитой отдел;

  • проксимальный прямой отдел;

  • тонкий отдел;

  • дистальный извитой отдел;

  • дистальный прямой отдел.

  • В состав коркового вещества входят следующие структуры:

  • почечные тельца Мальпиги;

  • проксимальные извитые канальцы;

  • дистальные извитые канальцы.

  • В корковом веществе залегают также компоненты юкстагломерулярного аппарата. В мозговом веществе находятся: проксимальные прямые канальцы, тонкие канальцы, дистальные прямые канальцы, а также в мозговом веществе находятся собирательные трубочки. Юкстагломерулярные нефроны имеют очень длинный тонкий сегмент, который состоит из нисходящей и восходящей частей (петля Генле). Они глубоко спускаются в мозговое вещество, в котором лежат также прямые проксимальные и прямые дистальные канальцы. Капсула нефрона, имеющая вид двустенной чаши, и входящие в нее капилляры первичной капиллярной сети образуют почечное тельце Мальпиги. Проксимальный каналец выполняет следующие функции:

  • облигатное (обязательное) обратное всасывание из первичной мочи в кровь белков и глюкозы;

  • факультативное всасывание воды и минеральных веществ;

  • секреция некоторых органических кислот и оснований;

  • экскреция некоторых экзогенных веществ;

  • биосинтез кальцитриола.

  • Тонкий отдел нефрона. В корковых нефронах этот отдел имеет нисходящую часть и залегает в основном в мозговых лучах и наружных отделах мозгового вещества, тогда как в юкстагломерулярных нефронах в нем имеются нисходящая и восходящая части. Тонкий отдел участвует в формировании петли Генле. Его стенка выстлана плоскими клетками, которые имеют глубокие складки цитолеммы. Функции:

  • пассивная реабсорбция воды из первичной мочи;

  • в восходящей части тонкого отдела юкстагломерулярных нефронов, напротив, непроницаемая для воды, помимо этого происходит диффузия солей.

  • Дистальный отдел делится на дистальный прямой и дистальный извитой канальцы. Дистальный прямой каналец образует восходящее колено петли и входит в состав мозгового вещества и мозговых лучей. Дистальный извитой каналец, многократно извиваясь в корковом веществе, подходит к почечному тельцу, образуя плотное пятно, а затем впадает в собирательную трубку. Дистальный отдел имеет хорошо выраженный просвет, образован кубическими или цилиндрическими клетками. Функции:

  • в дистальном отделе происходит дополнительная реабсорбция электролитов из мочи. Эти процессы идут активно, то есть против градиента концентрации, с затратой энергии;

  • в клетках дистального отдела синтезируется калликреин.