Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Материальная точка.doc
Скачиваний:
125
Добавлен:
16.04.2019
Размер:
1.49 Mб
Скачать

16.Законы Ома в интегральной и дифференциальной форме. Понятие эдс, условие поддержания постоянного тока.

Закон Ома в интегральной форме Закон Ома для участка электрической цепи имеет вид: U = RI где: U — напряжение или разность потенциалов, I — сила тока, R — сопротивление. Закон Ома также применяется ко всей цепи, но в несколько изменённой форме: I=E/(R+r), где: e — ЭДС цепи, I — сила тока в цепи, R — сопротивление всех элементов цепи, r — внутреннее сопротивление источника питания. Закон Ома в дифференциальной форме Сопротивление R зависит как от материала, по которому течёт ток, так и от геометрических размеров проводника. Полезно переписать закон Ома в так называемой дифференциальной форме, в которой зависимость от геометрических размеров исчезает, и тогда закон Ома описывает исключительно электропроводящие свойства материала. Для изотропных материалов имеем: j=σ*E где j- вектор плотности тока, σ — удельная проводимость, E — вектор напряжённости электрического поля. Все величины, входящие в это уравнение, являются функциями координат и, в общем случае, времени. Если материал анизотропен, то направления векторов плотности тока и напряжённости могут не совпадать. В этом случае удельная проводимость является тензором ранга (1, 1). Раздел физики, изучающий течение электрического тока в различных средах, называется электродинамикой сплошных сред.

- закон Ома в дифференциальной форме.

ЭДС

Отношение работы сторонних сил по перемещению заряда к величине этого заряда и есть ЭДС (электродвижущая сила).

Обозначим работу сторонних сил — A, переносимый заряд — q, тогда из определения следует, что ЭДС

Исходя из этой формулы, можно дать и другое определение:

ЭДС – это физическая скалярная величина, численно равная работе сторонних сил по перемещению единичного положительно заряда.

Таким образом, ЭДС характеризует действие сторонних сил и не является силой в обычном понимании этого слова. Здесь опять используется не очень удачная, но исторически установившаяся терминология.

Из этой формулы видно, что ЭДС измеряется в Вольтах (В).

Для поддержания тока в электрической цепи на заряды кроме кулоновских сил должны действовать силы неэлектрической природы (сторонние силы).

Устройство, создающее сторонние силы, поддерживающее разность потенциалов в цепи и преобразующее различные виды энергии в электрическую энергию, называется источником тока.

Для существования электрического тока в замкнутой цепи необходимо включение в нее источника тока.

17. Энергетика тока, закон Джоуля - Ленца в интегральной и дифференциальной форме. Ток в разных средах.

Если в проводнике течет постоянный ток и проводник остается неподвижным, то работа сторонних сил расходуется на его нагревание. Опыт показывает, что в любом проводнике происходит выделение теплоты, равное работе, совершаемой электрическими силами по переносу заряда вдоль проводника. Если на концах участка проводника имеется разность потенциалов , тогда работу по переносу заряда q на этом участке равна

По определению I= q/t. откуда q= I t. Следовательно

Так как работа идет па нагревание проводника, то выделяющаяся в проводнике теплота Q равна работе электростатических сил

(17.13)

Соотношение (17.13) выражает закон Джоуля-Ленца в интегральной форме. Введем плотность тепловой мощности , равную энергии выделенной за единицу время прохождения тока в каждой единице объема проводника

где S - поперечное сечение проводника, - его длина. Используя (1.13) и соотношение , получим

Но - плотность тока, а , тогда

с учетом закона Ома в дифференциальной форме , окончательно получаем

(17.14)

Ф-ла (17.14) выражает закон Джоуля-Ленца в дифференц форме: объемная плотность тепловой мощности тока в проводнике равна произведению его удельной электрической проводимости на квадрат напряженности электрического поля.

Ток в металлах: Эл ток в металлах это упорядоченное движение свободных электронов между ионами кристаллической решетки

1920г Пауль Друдде(теория электропровод метталлов)

1. Свободные Эл в металле ведут себя как молекулы идеального газа

2. Движение электронов в металле подчиняется законам Ньютона

3. Свободные Эл в процессе движ сталкиваются не между собой, а только с ионами кристаллич решетки

4. При столкновениях электр полностью отдают свою энергию ионам

Ток в полупроводниках:

Полупроводники обладают собственной проводимостью:

1. дырочная- это не занятая Эл энергетич состояние в валентной зоне проводн

2. электронная проводимость.

Для того чтобы увеличить концентрацию свободных электронов в полупроводниках, необходимо затратить некоторую энергию для отрыва связанных электронов. Её называют энергией ионизации. При повышении температуры увеличивается количество электронов с тепловой энергией, превышающей, т.е. растёт доля свободных электронов.

Ток в жидкостях: Происхожд эл тока (движение эл зарядов) через раствор существенно отличается от движения электрических зарядов по металлич проводнику. Различие, прежде всего в том, что зарядоносителями в р-рах являются не электроны, а ионы, т.е. сами атомы или молекулы, потерявшие или захватившие один или несколько электронов. Естественно, это движение, так или иначе, сопровождается изменением свойств самого в-ва.

Диэлектрики. Поляризация – важнейшая характеристика диэлектрика. В зависимости от того, преобладает ли движение свободных зарядов, или происходит поляризация, вещества делятся на два класса – проводники и диэлектрики. В диэлектриках положительные и отрицательные заряды связаны друг с другом и не могут смещаться только в пределах одной молекулы (по-другому сказать, у диэлектриков целиком заполнена энергетическая зона). При отсутствии воздействия внешнего электрического поля заряды разных знаков распределены по объёму диэлектрика равномерно. Под действием внешнего поля заряды, входящие в каждую молекулу, смещаются в противоположных направлениях. Это смещение проявляется в виде появления зарядов на поверхности диэлектрика, помещенного в электрическое поле, поляризация. Поляризация протекает по-разному, в зависимости от вида химической связи в в-ве диэлектрика.

Ток в газах Изолирующие свойства газов объясняются тем, что в них нет свободных электрических зарядов: атомы и молекулы газов в естественном состоянии являются нейтральными. Ионизация газа может происходить под влиянием различных внешних взаимодействий: сильного нагрева газа, рентгеновских лучей