Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Материальная точка.doc
Скачиваний:
125
Добавлен:
16.04.2019
Размер:
1.49 Mб
Скачать

Интерференция света в тонких плёнках

Интерференция в тонкой плёнке. Альфа — угол падения, бета — угол отражения, жёлтый луч отстанет от оранжевого, они сводятся глазом в один и интерферируют.

Получить устойчивую интерференционную картину для света от двух разделённых в пространстве и независящих друг от друга источников света не так легко, как для источников волн на воде. Атомы испускают свет цугами очень малой продолжительности, и когерентность нарушается. Сравнительно просто такую картину можно получить, сделав так, чтобы интерферировали волны одного и того же цуга[1]. Так, интерференция возникает при разделении первоначального луча света на два луча при его прохождении через тонкую плёнку, например плёнку, наносимую на поверхность линз у просветлённых объективов. Луч света, проходя через плёнку толщиной d, отразится дважды — от внутренней и наружной её поверхностей. Отражённые лучи будут иметь постоянную разность фаз, равную удвоенной толщине плёнки, от чего лучи становятся когерентными и будут интерферировать. Полное гашение лучей произойдет при d= λ/4 , где λ — длина волны. Если λ = 550 нм, то толщина плёнки равняется 550:4=137,5 нм.

Лучи соседних участков спектра по обе стороны от λ = 550 нм интерферируют не полностью и только ослабляются, отчего плёнка приобретает окраску. В приближении геометрической оптики, когда есть смысл говорить об оптической разности хода лучей, для двух лучей

 — условие максимума;

 — условие минимума,

где k=0,1,2... и L1,2 — оптическая длина пути первого и второго луча, соответственно. При этом надо учитывать, что при отражении от поверхности оптически более плотной среды фаза отраженного луча скачкообразно меняется на π, другими словами, теряется половина длины волны, а при отражении от поверхности оптически менее плотной среды фаза не меняется[2]. Так, у оранжевого и жёлтого лучей на рисунке оптическая разность хода[3]:

где λ  — длина волны падающего луча.

Характерные интерференционные цвета наблюдаем в тонкой стенке мыльного пузыря

Явление интерференции наблюдается в тонком слое несмешивающихся жидкостей (керосина или масла на поверхности воды), в мыльных пузырях, бензине, на крыльях бабочек, в цветах побежалости, и т. д.

  1. Электромагнитные колебания, их характеристики. Колебательный контур. Электромеханические аналогии.

Электромагнитные колебания, взаимосвязанные колебания электрического (Е) и магнитного (Н) полей, составляющих единое электромагнитное поле. Распространение Электромагнитные колебания происходит в виде электромагнитных волн, скорость которых в вакууме равна скорости света с, а длина волны l связана с периодом Т и частотой w соотношением: l = cT = 2pс/w. По своей природе Электромагнитные колебания представляют собой совокупность фотонов, и только при большом числе фотонов их можно рассматривать как непрерывный процесс.   Различают вынужденные Электромагнитные колебания, поддерживаемые внешними источниками, и собственные Электромагнитные колебания, существующие и без них. В неограниченном пространстве или в системах с потерями энергии (диссипативных) возможны собственные Электромагнитные колебания с непрерывным спектром частот. Пространственно ограниченные консервативные (без потерь энергии) системы имеют дискретный спектр собственных частот, причём каждой частоте соответствует одно или несколько независимых колебаний (мод). Например, между двумя отражающими плоскостями, отстоящими друг от друга на расстояние l, возможны только синусоидальные Электромагнитные колебания с частотами wn = пpс/l, где п — целое число. Собственно моды имеют вид синусоидальных стоячих волн, в которых колебания векторов Е и Н сдвинуты во времени на T/4, а пространственные распределения их амплитуд смещены на l/4, так что максимумы (пучности) Е совпадают с нулями (узлами) Н и наоборот. В таких Электромагнитные колебания энергия в среднем не переносится в пространстве, но внутри каждого четвертьволнового участка между узлами полей происходит независимая периодическая перекачка электрической энергии в магнитную и обратно.   Представление Электромагнитные колебания в виде суперпозиции мод с дискретным или непрерывным спектром допустимо для любой сложной системы проводников и диэлектриков, если поля, токи, заряды в них связаны между собой линейными соотношениями. В квазистационарных системах, размеры которых значительно меньше длины волны, области, где преобладают электрические или магнитные поля, могут быть пространственно разделены и сосредоточены в отдельных элементах: Е — в ёмкостях С, Н — в индуктивностях L. Типичный пример такой системы с сосредоточенными параметрами — колебательный контур, где происходят колебания зарядов на обкладках конденсаторов и токов в катушках самоиндукции. Электромагнитные колебания в системах с распределёнными параметрами L и С, имеющие дискретный спектр собственных частот, могут быть представлены как Электромагнитные колебания в связанных колебательных контурах (электромагнитных осцилляторах), число которых равно числу мод.   В средах Электромагнитные колебания взаимодействуют со свободными и связанными заряженными частицами (электронами, ионами), создавая индуцированные токи. Токи проводимости обусловливают потери энергии и затухание Электромагнитные колебания; токи, обусловленные поляризацией и намагниченностью среды, определяют значения её диэлектрической проницаемости и магнитной проницаемости, а также скорость распространения в ней электромагнитных волн и спектр собственных частот Электромагнитные колебания Если индуцированные токи зависят от Е и Н нелинейно, то период, форма и другие характеристики Электромагнитные колебания зависят от их амплитуд; при этом принцип суперпозиции недействителен, и может происходить перекачка энергии Электромагнитные колебания от одних частот к другим. На этом основаны принципы работы большинства генераторов, усилителей и преобразователей частоты Электромагнитные колебания. Возбуждение Электромагнитные колебания в устройствах с сосредоточенными параметрами, как правило, осуществляется путем прямого подключения к ним генераторов, в высокочастотных устройствах с распределёнными параметрами — путём возбуждения Электромагнитные колебания при помощи различных элементов связи (вибраторов, петель связи, рамок, отверстий и др.), в оптических устройствах — с применением линз, призм, отражающих полупрозрачных зеркал и т. д.

Колебательный контур – это электрическая цепь состоящая из последовательно включенных катушки и конденсатора

Особенности:

  1. процесс перезарядки конденсатора относится к свободным колебаниям

  2. В контуре происходят постоянно преобразования энергии электрического поля конденсатора в энергию магнитного поля катушки.

Эти колебания будут гармоническими, если в системе будет отсутствовать потеря энергии на нагревании проводов