Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Shpora_OMM.doc
Скачиваний:
8
Добавлен:
20.04.2019
Размер:
1.16 Mб
Скачать
  1. Гра 2х2 в змішаних стратегіях. Алгоритм розв’язування задачі.

Найпростішим випадком скінченної гри є парна гра, коли у кожного учасника є дві стратегії.

Вj

Ai

B1

B2

A1

a11

a12

A2

a21

a22

Розглянемо випадок, коли гра не має сідлової точки. Отже, . Необхідно знайти змішані стратегії та ціну гри. Позначимо шукані значення ймовірноcтей застосування «чистих» стратегій гравця А через , а для гравця В — через .

Згідно з основною теоремою теорії ігор, якщо гравець А притримується своєї оптимальної стратегії, то виграш буде дорівнювати ціні гри. Отже, якщо гравець А притримуватиметься своєї оптимальної стратегії , то:

(11.3)

Оскільки , то . Підставивши цей вираз у систему рівнянь (11.3), отримаємо:

.

Розв’язавши дане рівняння відносно невідомого , маємо:

, (11.4)

тоді: = . (11.5)

Провівши аналогічні міркування стосовно гравця В, маємо:

(11.6)

Оскільки , то .

.

Розв’язавши це рівняння відносно невідомого , маємо:

, (11.7)

тоді: . (11.8)

Ціну гри  знаходять, підставлючи значення (або ) в будь-яке з рівнянь (11.3) або (11.6):

.

13.Загальна постановка задачі лінійного програмування. Приклади економічних задач лінійного програмування.

Зада́ча ліні́йного програмува́ння — задача оптимізації з лінійною цільовою функцією та допустимою множиною обмеженою лінійними рівностями або нерівностями.

Тобто, необхідно мінімізувати

(1) при обмеженнях (2) 3 (4) де cj (j = 1, …, n), aij(i = 1, …, m) — задані числа.Задача максимізації функції (1) зводиться до задачі мінімізації шляхом заміни знаків всіх коефіціентів cj на протилежні.

14.Застосування теорем двоїстості в розв’язуванні задач лінійного програмування.

І т-ма: Якщо одна із спряжених задач має розв’язок то друга задача теж має розв’язок і знач-я цієї ф-ції співпадатимуть. Х*=(x*1,x*2,x*3…x*n);Y*=(y*1,y*2,y*3…y*n); Fmax=F(x*)=>Zmin=Z(y*);Fmax=Zmin; Max прибуток F підпр-во має від реалізації оптим плану х*, однак ту ж суму він отримає від продажу ресурсів за оптим. Цінами у*. ІІ т-ма: При підстановці оптим плану х* в і-те обмеж-я прямої задачі можна отримати 2 варіанти оцінки ресурсів, якщо маємо знак (=), то ресурс викор-ся повністю, він є дефіцитним тобто цінним, його треба поповнювати, його двоїста оцінка є додатнім числом. ІІІ т-ма: Компоненти оптим плану Y*i дають оцінку дефіцитних і недефіц-их ресурсів, а кожне додатнє знач-я двоїстої оцінки характер-є приріст цільової ф-ції F, зумовлю-ий малими змінами на одиницю відповідного запасу дефіцитних ресурсів. В симплекс таблиці знач-я двоїстих оцінок знаходь в останньому перевірочному рядку навпроти баз. змінних прямої задачі.

15.Зведення гри двох осіб до задачі лінійного програмування.

Для розв’язування гри m × n використовують прийом зведення її до задачі лінійного програмування.

Нехай розглядається парна гра зі стратегіями для гравця А та стратегіями для гравця В і платіжною матрицею . Необхідно знайти оптимальні змішані стратегії та , де , .

Знайдемо спочатку оптимальну стратегію гравця А. За основною теоремою теорії ігор така стратегія має забезпечити гравцеві виграш, не менший за ціну гри (поки що невідому величину) , за будь-якої поведінки гравця В.

Допустимо, що гравець А застосовує свою оптимальну стратегію, а гравець В — свою «чисту» j-ту стратегію Bj, тоді середній виграш гравця А дорівнюватиме:

. (11.10)

За цих обставин виграш має бути не меншим, ніж ціна гри. Отже, для будь-якого значення j величина виду (11.10) має бути не меншою, ніж :

Розділивши всі обмеження на , отримаємо:

Позначивши маємо:

.

Враховуючи умову, що , отримуємо .

Необхідно зробити виграш максимальним. Цього можна досягти, коли вираз набуватиме мінімального значення. Отже, врешті маємо звичайну задачу лінійного програмування.

Цільова функція:

(11.11)

за умов:

(11.12)

.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]