Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
теплотехника 35-44.doc
Скачиваний:
5
Добавлен:
23.04.2019
Размер:
342.53 Кб
Скачать

Вопрос 35. Закон Планка.

Формула Планка — выражение для спектральной плотности мощности излучения абсолютно чёрного тела, которое было получено Максом Планком. Для плотности энергии излученияu(ω,T):

Формула Планка была получена после того, как стало ясно, что формула Рэлея — Джинса удовлетворительно описывает излучение только в области длинных волн. Для вывода формулы Планк в 1900 году сделал предположение о том, что электромагнитное излучение испускается в виде отдельных порций энергии (квантов), величина которых связана с частотой излучения выражением:

Коэффициент пропорциональности   впоследствии назвали постоянной Планка,   = 1.054 · 10−27 эрг·с.

Вывод для абсолютно чёрного тела

Излучение абсолютно чёрного тела

Выражение для средней энергии колебания частотой ω дается выражением:

где   — постоянная Планка, k — постоянная Больцмана.

Количество стоячих волн в трёхмерном пространстве равно:

Вопрос 36. Закон Стефана-Больцмана. Переход к закону Стефана — Больцмана.

Энергетическая светимость равна площади, ограниченной графиком функции f(ω,Т)

Для энергетической светимости следует записать интеграл:

Введём переменную  , тогда  , получим

Полученный интеграл имеет точное значение:  , подставив его получим известный закон Стефана — Больцмана:

Подстановка численных значений констант даёт значение для   Вт/(м2   K4), что хорошо согласуется с экспериментом.

Вопрос 37. Закон Кирхгофа, закон смещения Вина. Переход к закону смещения Вина

Для нахождения закона, по которому происходит смещение максимума φ(λ,Т) в зависимости от температуры, надо исследовать функцию φ(λ,Т) на максимум.

Для перехода к закону Вина, необходимо продифференцировать выражение (5) по λ и приравнять нулю (поиск экстремума):

.

Значение λm, при котором функция достигает максимума, обращает в нуль выражение, стоящее в фигурных скобках. Обозначим  , получится уравнение:

.

Решение такого уравнения даёт x=4.965. Следовательно  , отсюда немедленно получается:

.

Численная подстановка констант даёт значение для b=0,0028999 К·м, совпадающее с экспериментом, а также удобную приближенную формулу   мкм·К. Так, солнечная поверхность имеет максимум интенсивности в зеленой области (0,5 мкм), что соответствует температуре около 6000 К.

Закон излучения Кирхгофа - отношение излучательной способности любого тела к его поглощательной способности одинаково для всех тел при данной температуре для данной частоты и не зависит от их формы, химического состава и проч. Этот закон был установлен немецким физиком Г.Р. Кирхгофом в 1859 году.

Известно, что при падении электромагнитного излучения на некоторое тело часть его отражается, часть поглащается и часть может пропускаться. Доля поглощаемого излучения на данной частоте называется поглощательной способностью тела  . С другой стороны, каждое нагретое тело излучает энергию по некоторому закону  , именуемым излучательной способностью тела. Согласно закону излучения Кирхгофа справедливо следующее выражение:

Здесь   - универсальная функция частоты и температуры, именуемая излучательной способностью абсолютно чёрного тела.

По определению, абсолютно чёрное тело поглощает всё падающее на него излучение, т.е.   = 1. Реальные тела имеют поглощательную способность меньшую единицы, а значит, в соответствии с законом Кирхгофа, и меньшую чем у абсолютно чёрного тела излучательную способность при той же температуре на той же частоте.

Закон Планка устанавливает зависимость спектральной интенсивности излучения абсолютно черного тела J от длины волны и температуры:

,

(11.12)



где λ — длина волны излучения, м; Т — температура излучающего тела, К; c1=3,74·10-16Вт·м2c2=1,44·10-2 м·К; e – основание натуральных логарифмов.

Анализ выражения (11.12) показывает, что при λ=0 и λ=∞ J=0, а при некотором промежуточном значении - имеет максимум. Для всех длин волн интенсивность излучения тем выше, чем выше температура. Максимумы кривых с повышением температуры смещаются в сторону более коротких волн.

Закон Стефана — Больцмана. Плотность потока собственного интегрального излучения абсолютно черного тела можно найти на осно­вании закона Планка как суммарную энергию излучения тела по всем длинам волн

.

(11.13)



В результате интегрирования найдём

,

(11.14)



где с0=5,67 Вт/(м2·К4) — коэффициент излучения абсолютно черного тела. Индекс «О» указывает на то, что рассматривается излучение абсолютно черного тела. Этот закон опытным путем найден Стефаном и теоретически обоснован Больцманом задолго установления закона Планка.

Спектры излучения реальных тел отличны от спектра излучения абсолютно черного тела. При этом спектральная интенсивность излучения тела на любой длине волны никогда не превышает соответствующую спектральную интенсивность излучения абсолютно черного тела. В случае селективного спектра излучения на некоторых участках длин волн интенсивность излучения равна нулю. Частным случаем реальных тел являются серые тела, спектр излучения которых подобен спектру излучения абсолютно черного тела. Интенсивность излучения для каждой длины волны серого тела Jλ составляет одну и ту же долю интенсивности излучения черного тела J, то есть

.

(11.15)



Здесь величина ε — степень черноты тела, зависящая от физических свойств тела, но всегда ε<1. Большинство реальных тел с определенной степенью точности можно считать серыми. Закон Стефана — Больцмана для серого тела с учетом выражения (11.15) имеет вид:

,

(11.16)



где с — коэффициент излучения серого тела.

Закон Кирхгофа. Рассмотрим две параллельные поверхности, одна из которых абсолютно черная с температурой Т0, вторая серая с температурой Т и поглощающей способностью A. Расстояние между поверхностями настолько близко, что испускаемые каждой поверхностью лучи обязательно попадают на противоположную. Серая стенка излучает энергию Е и поглощает часть излучаемой черным телом энергии А·E0. Излучаемая серым телом энергия Е и отраженная им энергия (1—А)·E0 попадают на черное тело и поглощаются им.

Результирующее излучение серого тела qр=Е—А·E0. При Т0=Т, qр=0, отсюда

.

(11.17)



Итак, отношение излучающей способности серого тела к его поглощающей способности при температурном равновесии не зависит от природы тела и равно энергии излучения абсолютно черного тела при той же температуре. Этот закон справедлив и для монохроматического излучения:

.

(11.18)



Здесь Аλ — поглощающая способность в узком интервале длин волн. Следовательно, тело, излучающее энергию при какой-либо длине волны, способно поглощать ее при этой же длине волны. На основании равенства (11.17) можно записать Е=А·E0. Однако по (11.16) Е=ε·E0. Таким образом, из закона Кирхгофа также следует, что поглощающая способность серого тела численно равна степени его черноты, то есть А=ε.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]