Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Ответы по мбф.doc
Скачиваний:
3
Добавлен:
28.04.2019
Размер:
865.28 Кб
Скачать

34. Начало формы

Я́дерный магни́тный резона́нс

(ЯМР)

избирательное поглощение веществом электромагнитного излучения, обусловленное переориентацией магнитных моментов атомных ядер, находящихся в постоянном магнитном поле. На явлении ЯМР основан метод изучения структуры и молекулярного движения в различных веществах, в т.ч. в биологических объектах.

Ядра атомов большинства химических элементов (за исключением ядер с четным числом протонов и нейтронов) обладают так называемым спином, т.е. моментом количества движения и обусловленным им постоянным магнитным моментом. При помещении в постоянное магнитное поле магнитный момент системы ядер, подобно вращающемуся волчку, выведенному из вертикального положения, движется по поверхности конуса вращения вокруг оси направления поля (прецессионное движение). Воздействие внешнего переменного электромагнитного излучения с данной частотой на ядра, находящиеся в постоянном магнитном поле, приводит к избирательному (резонансному) поглощению энергии электромагнитного излучения и появлению сигнала ЯМР. Разным ядрам соответствуют различные частоты резонанса. Для изучения биологических систем обычно используют ЯМР ядер водорода — протонов (протонный магнитный резонанс) и дейтерия углерода , и др.

Применение ЯМР для структурных исследований основано на том, что помимо внешнего магнитного поля на ядро в веществе действуют различные внутренние поля. Они приводят к сдвигу частоты резонанса, расщеплению на несколько или множество резонансных линий, т.е. к

образованию спектра ЯМР, к изменению формы линий, времени релаксации. Изучение спектров ЯМР позволяет сделать вывод о химической и пространственной структуре различных веществ без проведения химического анализа.

В медико-биологических исследованиях метод ЯМР используют для установления структуры биологически активных веществ и изучения механизмов их действия. Важной особенностью метода, особенно для биологии и медицины, является низкая энергия используемых в ЯМР излучений, что существенно снижает их вредное воздействие на организм.

Картину пространственного распределения отдельных видов молекул в организме получают методом ЯМР-интроскопии (ЯМР-томографии). В его основе лежит создание с помощью последовательно приложенных градиентов магнитного поля по различным направлениям такого распределения магнитного поля, чтобы в данный момент различным элементам объема в пределах изучаемого сечения соответствовали свои, определенные для их местоположения частоты резонанса. Изменение градиентов во времени и обработка результатов измерений с помощью ЭВМ позволяют получить пространственную картину распределения молекул, содержащих, например, атомы водорода или фосфора (при наблюдении магнитного резонанса от протонов или ядер фосфора) в пределах изучаемого сечения.

При регистрации ЯМР-изображения амплитуда резонанса в каждом элементе объема может быть выражена через интенсивность освещения или в цветовой шкале. Так, кровеносные сосуды в ЯМР-изображении выглядят темными вследствие оттока крови из исследуемого объема за время измерения. Для магнитных моментов ядер в различных элементах объема может быть измерено время релаксации, в частности по уменьшению амплитуды резонанса, не успевающей полностью восстановиться при достаточно большой частоте следования импульсов. Это увеличивает контрастность в изображении различных тканей, что используют, например, чтобы различить изображения серого и белого вещества мозга, опухолевых клеток от здоровых. Достоинством метода ЯМР-интроскопии является его высокая чувствительность в изображении мягких тканей, а также высокая разрешающая способность

Электронный Парамагнитный Резонанс (ЭПР) — спектроскопический метод изучения вещества, открытый Завойским Евгением Константиновичем (E.K. Zavoisky) в Казанском государственном университете в 1944 г.

Суть явления электронного парамагнитного резонанса заключается в следующем. Если поместить свободный радикал с результирующим моментом количества движения J в магнитном поле с напряженностью B0, то для J, отличного от нуля, в магнитном поле снимается вырождение, и в результате взаимодействия с магнитным полем возникает 2J+1 уровень, положение которого описывается выражением: W = gβB0M, (где М = +J, +J-1, …-J) и определяется Зеемановским взаимодействием магнитного поля с магнитным моментом J. Расщепление энергетических уровней электрона показано на рисунке.

Энергетические уровни и разрешенные переходы для атома с ядерным спином 1 в постоянном (А) и переменном (В) поле.

Если теперь к парамагнитному центру приложить электромагнитное поле с частотой ν, перпендикулярное B0, то оно будет вызывать магнитные дипольные переходы, подчиняющиеся правилу отбора ΔМ = 1. При совпадении энергии электронного перехода с энергией электромагнитной волны будет происходить резонансное поглощение СВЧ излучения. Таким образом, условие резонанса определяются фундаментальным соотношением магнитного резонанса

hν = gβB0.

Поглощение энергии СВЧ поля наблюдается в том случае, если между уровнями существует разность заселённостей.

При тепловом равновесии существует небольшая разность заселённостей зеемановских уровней, определяемая больцмановским распределением N + / N − = exp(gβB0/kT). В такой системе при возбуждении переходов очень быстро должно наступить равенство заселённостей энергетических подуровней и исчезнуть поглощение СВЧ поля. Однако, в действительности существует много различных механизмов взаимодействия, в результате которых электрон безизлучательно переходит в первоначальное состояние. Эффект неизменности интенсивности поглощения при увеличении мощности возникает за счёт электронов, не успевающих релаксировать, и называется насыщением. Насыщение появляется при высокой мощности СВЧ излучения и может заметно исказить результаты измерения концентрации центров методом ЭПР.

Значение метода

Метод ЭПР даёт уникальную информацию о парамагнитных центрах. Он однозначно различает примесные ионы, изоморфно входящие в решётку от микровключений. При этом получается полная информация о данном ионе в кристалле: валентность, координация, локальная симметрия, гибридизация электронов, в сколько и какие структурные положения он входит, ориентирование осей кристаллического поля в месте расположения этого иона, полная характеристика кристаллического поля и детальные сведения о химической связи. И, что очень важно, метод позволяет определить концентрацию парамагнитных центров в областях кристалла с разной структурой.

Но спектр ЭПР это не только характеристика иона в кристалле, но и самого кристалла, особенностей распределения электронной плотности, кристаллического поля, ионности-ковалентности в кристалле и наконец просто диагностическая характеристика минерала, так как каждый ион в каждом минерале имеет свои уникальные параметры. В этом случае парамагнитный центр является своеобразным зондом, дающий спектроскопические и структурные характеристики своего микроокружения.

Это свойство используется в т. н. методе спиновых меток и зондов, основанный на введении стабильного парамагнитного центра в исследуемую систему. В качестве такого парамагнитного центра, как правило, используют нитроксильный радикал, характеризующийся анизотропными g и A тензорами.

[править] Техника получения спектров

Существует два основных типа спектрометров основанных на непрерывном и импульсном воздействии на образец.

В спектрометрах непрерывного излучения обычно регистрируется не линия резонансного поглощения, а производная этой линии. Это связано, во-первых, с большей чёткостью проявления отдельных линий в сложных спектрах, во-вторых, с техническими удобствами регистрации первой производной. Резонансному значению магнитного поля отвечает пересечение первой производной с нулевой линией, ширина линии измеряется между точками максимума и минимума.

Диапазон

λ, мм

ν, ГГц

B0, Тл

L

300

1

0.03

S

100

3

0.11

C

75

4

0.14

X

30

10

0.33

P

20

15

0.54

K

12.5

24

0.86

Q

8.5

35

1.25

U

6

50

1.8

V

4.6

65

2.3

E

4

75

2.7

W

3.1

95

3.4

F

2.7

110

3.9

D

2.2

140

4.9

-

1.6

190

6.8

-

1

285

10.2

Из приведенного выше уравнения следует, что резонансное поглощение СВЧ энергии может произойти либо при изменении длины волны либо при изменении напряжённость магнитного поля. Спектры ЭПР обычно регистрируются при постоянной частоте СВЧ излучения при изменении магнитного поля. Это обусловлено специфичностью элементов СВЧ техники, характеризующиеся узкой полосой пропускания. Для увеличения чувствительности метода используют высокочастотную модуляцию магнитного поля B0, при этом фиксируется производная спектра поглощения. Диапазон регистрации ЭПР определяется частотой ν или длиной волны λ СВЧ излучения при соответствующей напряженности магнитного поля B0 (см. таблицу).

Наиболее часто эксперименты проводятся в X- и в Q-диапазонах ЭПР. Это обусловлено тем, что волноводные СВЧ тракты приборов с такими частотами регистрации изготавливались из разработанной к тому времени элементной базы радиолокационной техники. Магнитное поле в таких ЭПР спектрометрах создается электромагнитом. Возможности метода существенно расширяются при переходе в более высокочастотные диапазоны СВЧ. Можно отметить следующие преимущества миллиметровой ЭПР спектроскопии:

Основным преимуществом ЭПР спектроскопии миллиметрового диапазона является высокое спектральное разрешение по g-фактору, пропорциональное частоте регистрации ν или напряженности внешнего магнитного поля B0 (см. нижний рисунок).

При ν > 35 ГГц насыщение парамагнитных центров достигается при меньшем значении СВЧ поляризующеего поля из-за экспоненциальной зависимости числа возбужденных спинов от частоты регистрации. Этот эффект успешно используется при исследовании релаксации и динамики парамагнитных центров.

В высоких магнитных полях существенно уменьшается кросс-релаксация парамагнитных центров, что позволяет получать более полную и точную информацию об исследуемой системе.

В миллиметровых диапазонах ЭПР увеличивается чувствительность метода к ориентации разупорядоченных систем в магнитном поле.

Благодаря большей энергии СВЧ квантов в этих диапазонах появляется возможность исследования спиновых систем с более сильным расщеплением в нулевом поле.

При регистрации спектров ЭПР в высоких магнитных полях они становятся более простыми из-за уменьшения эффектов второго порядка.

В высоких магнитных полях увеличивается информативность импульсных методов, например, ENDOR.

Зависимость формы спектра ЭПР нитроксильного радикала от частоты СВЧ излучения ν. Спектры, зарегистрированные при ν = 9, 35, 95 и 140 ГГц, показаны красным цветом

Использование электромагнитов для создания магнитного поля выше 1.5 Тл при ν > 35 ГГц оказалось невозможным ввиду фундаментальных ограничений классических магнитов, поэтому в ЭПР спектрометрах миллиметровых диапазонов используется криостат со сверхпроводящим соленоидом. Первый многофункциональный ЭПР спектрометр D-диапазона был разработан и создан в 70-х годах XX века в Институте химической физики АН СССР под руководством профессора Я. С. Лебедева при участии Группы ЭПР низкоразмерных соединений Отделения Института химической физики в Черноголовке (ныне [Институт проблем химической физики] РАН) и Донецкого физико-технического института АН УССР под руководством Л. Г. Оранского. В конце XX века немецкой фирмой Bruker начат выпуск малой серии ЭПР спектрометров W-диапазона.