Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Жопа.docx
Скачиваний:
20
Добавлен:
28.04.2019
Размер:
663.16 Кб
Скачать

12 Частотно-манипулированные сигналы с непрерывной фазой.

Частотно-манипулированные FSK сигналы одни из самых распространенных в современной цифровой связи. Это обусловлено прежде всего простотой их генерирования и приема, ввиду нечувствительности к начальной фазе. Когда исходный модулирующий сигнал   представляет собой двоичную бинарную последовательность нулей и единиц следующую с битовой скоростью   . Формирователь FSK сигнала и принцип его функционирования можно условно представить, как это показано на рисунке 1.

Рисунок 1: Принцип формирования FSK сигнала

На рисунке 1 показано два генератора, формирующие колебания   и   на различных частотах (смотри поясняющие осциллограммы рисунка 1). Также имеется электронный ключ, управляемый цифровым сигналом  , таким образом, что при передаче логической «1» на выход подается сигнал  , а при передаче логического «0» - сигнал . Таким образом, частота выходного сигнала «манипулируется» в зависимости от битовой последовательности.

13 Характеристики сигналов с фазовой манипуляцией.

Временные характеристики сигналов с относительной фазовой манипуляцией

Неоднозначность характерная для ФМн сигналов, устранена в системах относительно-фазовой манипуляции (ОФМн). У такого метода манипуляции информация заложена не в абсолютном значении начальной фазы, а в разности начальных фаз соседних посылок, которая остается неизменной и на приемной стороне. Для передачи первого двоичного символа в системах с ОФМн необходима одна дополнительная посылка сигнала, передаваемая перед началом передачи информации и играющая роль отсчетной.

Процесс формирования сигнала с ОФМн можно свести к случаю формирования сигнала с ФМн путем перекодирования передаваемой двоичной последовательности. Алгоритм перекодировки прост: если обозначить   как информационный символ, подлежащий передаче на  -м единичном элементе сигнала, то перекодированный в соответствии с правилами ОФМн символ   определяется следующим рекуррентным соотношением:  . Для получения сигнала с ОФМн достаточно умножить полученный (перекодированный) сигнал   на несущее колебание. Структурная схема модулятора для ОФМн (рис. 2.22) содержит генератор несущего колебания, перемножитель (ФМ) и перекодирующее устройство (относительный кодер) состоящий из перемножителя и элемента памяти.

Демодулятор сигнала с ОФМн содержит фазовый детектор, состоящий из перемножителя и ФНЧ, на который подается опорное колебание, совпадающее с одним из вариантов принимаемого сигнала. Дальнейшее вычисление разности фаз и определение переданного ПЭС осуществляется перемножением сигналов на выходе детектора, задержанных друг относительно друга на длительность единичного интервала.

следует отметить недостатки систем с ОФМн, которые следует учитывать при выборе методов модуляций:

необходимость передачи отсчетной посылки в начале сеанса связи;

увеличение вероятности ошибки примерно вдвое;

появление двойных ошибок в цифровом потоке, что усложняет кодек при использовании корректирующих кодов;

сложность построения модема для ОФМн по сравнению с модемом для ФМн.

Для реализации системы с ФМн необходима передача специального синхросигнала (маркерного сигнала), соответствующему одному из символов, например 0. Другой путь реализации ФМн – применение специальных кодов с избыточностью, позволяющих обнаруживать ошибки типа инвертирования всех символов. Все это ведет к определенным потерям: энергетическим, скоростным и аппаратурным, и при выборе метода модуляции ФМн или ОФМн необходимо учитывать их достоинства и недостатки.