Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
№2.doc
Скачиваний:
3
Добавлен:
04.05.2019
Размер:
209.92 Кб
Скачать

Задание №2. Изучение внешнего фотоэффекта, снятие вольтамперной характеристики электровакуумного фотоэлемента

Приборы и принадлежности

Электровакуумный фотоэлемент; регулируемый источник питания с изменяемой полярностью; микроамперметр; вольтметр или два универсальных цифровых вольтметра; масштабная линейка; осветитель; оптическая скамья.

Цель задания снятие вольтамперной характеристики газонаполненного фотоэлемента, проверка законов фотоэффекта.

Краткая теория

Внешним фотоэффектом (фотоэлектронной эмиссией) называется испускание электронов веществом под действием света. Электроны, вылетающие из вещества при внешнем фотоэффекте, называются фотоэлектронами, а электрический ток, образуемый ими при упорядоченном движении во внешнем электрическом поле, фототоком.

Рис. 3. Схема установки для изучения внешнего фотоэффекта

На рис. 3 показана схема установки для изучения внешнего фотоэффекта в металлах. Свет падает через окно D, прозрачное во всей исследуемой спектральной области, на поверхность катода фотокатода К, помещенного внутрь трубки, в которой создан вакуум. Характер зависимости фототока I в трубке от разности потенциалов U между анодом А и катодом К при постоянной энергетической освещенности Еэ катода монохрома-тическим светом изображен на рис. 4.

Рис. 4. Зависимость фототока I от разности потенциалов U

между анодом и катодом: Еэ=const

Существование фототока при отрицательных значениях U от 0 до –U0 свидетельствует о том, что фотоэлектроны выходят из катода, имея некоторую начальную скорость и, соответственно, кинетическую энергию. Максимальная начальная скорость фотоэлектронов max связана с задерживающим напряжением (задерживающим потенциалом) U0 соотношением

, (4)

где е и m – абсолютная величина заряда и масса электрона.

Фототок увеличивается с ростом U лишь до определенного предельного значения Iн, называемого фототоком насыщения. При фототоке насыщения все электроны, вылетающие из катода под влиянием света, достигают анода. Если nс – число фотоэлектронов, покидающих катод за 1 с, то Iн = enс .

Основные законы внешнего фотоэффекта

1. При неизменном спектральном составе света, падающего на фотокатод, фототок насыщения пропорционален энергетической освещенности катода (закон Столетова):

Iн ~ Eэ и nс ~ Eэ.

2. Для данного фотокатода максимальная начальная скорость фотоэлектронов зависит от частоты света и не зависит от его интенсивности.

3. Для каждого фотокатода существует красная граница внешнего фотоэффекта, т.е. минимальная частота света v0, при которой еще возможен внешний фотоэффект; частота v0 зависит от материала фотокатода и состояния его поверхности.

Второй и третий закон внешнего фотоэффекта не удается объяснить на основе классической электромагнитной теории света. Согласно этой теории вырывание электронов проводимости из металла  результат их «раскачивания» в электромагнитном поле световой волны, которое должно усиливаться при увеличении интенсивности света и пропорциональной ей энергетической освещенности фотокатода.

Лишь квантовая теория света позволила успешно объяснить законы внешнего фотоэффекта. Развивая идеи Планка о квантовании энергии атомов – осцилляторов, Эйнштейн высказал гипотезу о том, что свет не только излучается, но также распространяется в пространстве и поглощается веществом в виде отдельных дискретных квантов электромагнитного излучения – фотонов. Все фотоны монохроматического света частоты v имеют одинаковую энергию Е = hv, где h – постоянная Планка, и движутся в пространстве со скоростью с света в вакууме. В случае поглощения света веществом каждый поглощенный фотон передает всю свою энергию частице вещества. Например, при внешнем фотоэффекте электрон проводимости металла, поглощая фотон, получает его энергию hv. Для выхода из металла электрон должен совершить работу выхода А. Поэтому уравнение Эйнштейна для внешнего фотоэффекта, выражающее закон сохранения энергии при фотоэффекте, имеет вид

, (5)

где h = 6,63·10-34 Дж·с – постоянная Планка; m = me = 9,11·10-31 кг – масса электрона.

Порядок выполнения задания № 2

1. Собрать электрическую схему установки для снятия вольтамперной характеристики электровакуумного фотоэлемента в соответствии с рис. 5, соблюдая полярность подключения приборов.

Рис. 5. Схема установки для исследования законов внешнего

фотоэффекта: 1  электровакуумный фотоэлемент

 анод, ФК  фотокатод); 2  регулируемый

источник постоянного тока с изменяемой полярностью

Оптическая схема установки представляет собой осветитель и фотоэлемент, расположенные на одной высоте на оптической скамье.

2. Включить источник питания и осветитель.

3. Изменять подаваемое на фотоэлемент прямое напряже-ние от 0 В до достижения тока насыщения, записывать показания вольтметра и амперметра. Затем уменьшать напряжение до 0 В и измерять фототок при тех же значениях напряжения.

4. Выполнить п.3 для трех различных расстояний от фотоэлемента до осветителя.

5. Полученные результаты представить в виде табл. 2.

6. Построить семейство вольтамперных характеристик.

Таблица 2

Расстояние от фотоэлемента до осветителя

l,см

Подаваемое на фотоэле-мент прямое напряжение U, В

Фототок I при повышении напряжения, мкA

Фототок I при понижении напряжения, мкA

Среднее значение фототока Iср, мкA

ln

Контрольные вопросы к заданию № 2

  1. В чем заключается явление внешнего фотоэффекта?

  2. Какова суть законов фотоэффекта?

  3. Как формулируется уравнение Эйнштейна для фотоэффекта?

  4. Что называется работой выхода электрона из металла?

  5. Из каких участков состоит вольтамперная характеристика вакуумного фотоэлемента?