Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

Денисенко 4 сем (билеты)

.pdf
Скачиваний:
105
Добавлен:
08.06.2019
Размер:
2.81 Mб
Скачать

Существует два основных механизма действия сигнальных молекул по локализации рецептора:

1.Мембранный-рецептор расположен на мембране. Для этих рецепторов в зависимости от способа передачи гормонального игнала в клетку выделяют три вида мембраносвязанных рецепторов и , соответственно, три механизма передачи сигнала. по данному механизму работают пептидные и белковые гормоны, катехоламины, эйкозаноиды.

2.Цитозольный-рецептор расположен в цитозоле.

Виды мембраносвязанных рецепторов.

1. Рецепторы, обладающие каталитической активностью – при взаимодействии лиганда с рецептором активируется внутриклеточная часть (домен) рецептора, имеющий тирозинфосфатазную или гуанилатциклазную активность. По этому механизму действуют инсулин, пролактин, ростовые факторы, интерфероны и т.д.

2. Каналообразующие рецепторы-присоединение лиганда к рецептору вызывает открытие ионного канала на мембране. Таким образом действуют нейромедиаторы (ацетилхолин, глицин, серотонин, глутамат и т. д.).

3.Рецепторы, связанные с G-белками-передача сигнала от гормона происходит при посредстве G-белка. G-белок влияет на ферменты, образующие вторичные мессенджеры (посредники). Последние передают сигнал на внутриклеточные белки. Большинство гормонов действуют по данному механизму.К третьему виду относятся аденилатциклазный и кальций фосфолипидный механизмы:

44. Синтез и секреция инсулина, глюкагона. Роль этих гормонов в регуляции обменных процессов.

Строение

Инсулин представляет собой белок, состоящий из двух пептидных цепей А (21 аминокислота) и В (30 аминокислот), связанных между собой дисульфидными мостиками. Всего в зрелом инсулине человека присутствует 51 аминокислота и его молекулярная масса равна 5,7 кДа.

Синтез

Инсулин синтезируется в β-клетках поджелудочной железы в виде препроинсулина, на N- конце которого находится концевая сигнальная последовательность из 23 аминокислот, служащая проводником всей молекулы в полость эндоплазматической сети. Здесь концевая последовательность сразу отщепляется и проинсулин транспортируется в аппарат Гольджи. На данном этапе в молекуле проинсулина присутствуют А-цепь, В- цепь и С-пептид (англ. connecting – связующий). В аппарате Гольджи проинсулин упаковывается в секреторные гранулы вместе с ферментами, необходимыми для "созревания" гормона . По мере перемещения гранул к плазматической мембране образуются дисульфидные мостики, вырезается связующий С-пептид (31 аминокислота) и формируется готовая молекула инсулина. В готовых гранулах инсулин находится в кристаллическом состоянии в виде гексамера, образуемого с участием двух ионов Zn2+.

Регуляция синтеза и секреции

Секреция инсулина происходит постоянно, и около 50% инсулина, высвобождаемого из β- клеток, никак не связано с приемом пищи или иными влияниями. В течение суток поджелудочная железа выделяет примерно 1/5 от запасов имеющегося в ней инсулина.

Главным стимулятором секреции инсулина является повышение концентрации глюкозы в крови выше 5,5 ммоль/л, максимума секреция достигает при 17-28 ммоль/л. Особенностью этой стимуляции является двухфазное усиление секреции инсулина:

первая фаза длится 5-10 минут и концентрация гормона может 10-кратно возрастать, после чего его количество понижается,

вторая фаза начинается примерно через 15 минут от начала гипергликемии и продолжается на протяжении всего ее периода, приводя к увеличению уровня гормона в

15-25 раз.

Чем дольше в крови сохраняется высокая концентрация глюкозы, тем большее число β- клеток подключается к секреции инсулина.

Индукция синтеза инсулина происходит от момента проникновения глюкозы в клетку до трансляции инсулиновой мРНК. Она регулируется повышением транскрипции гена инсулина, повышением стабильности инсулиновой мРНК и увеличением трансляции инсулиновой мРНК.

Активация секреции инсулина

1.После проникновения глюкозы в β-клетки (через ГлюТ-1 и ГлюТ-2) она фосфорилируется гексокиназой IV (глюкокиназа, обладает низким сродством к глюкозе),

2.Далее глюкоза аэробно окисляется, при этом скорость окисления глюкозы линейно зависит от ее количества,

3.В результате нарабатывается АТФ, количество которого также прямо зависит от концентрации глюкозы в крови,

4.Накопление АТФ стимулирует закрытие ионных K+-каналов, что приводит к деполяризации мембраны,

5.Деполяризация мембраны приводит к открытию потенциал-зависимых Ca2+-каналов и притоку ионов Ca2+ в клетку,

6.Поступающие ионы Ca2+ активируют фосфолипазу C и запускают кальцийфосфолипидный механизм проведения сигнала с образованием ДАГ и инозитолтрифосфата (ИФ3),

7.Появление ИФ3 в цитозоле открывает Ca2+-каналы в эндоплазматической сети, что ускоряет накопление ионов Ca2+ в цитозоле,

8.Резкое увеличение концентрации в клетке ионов Ca2+ приводит к перемещению секреторных гранул к плазматической мембране, их слиянию с ней и экзоцитозу кристаллов зрелого инсулина наружу,

9.Далее происходит распад кристаллов, отделение ионов Zn2+ и выход молекул активного инсулина в кровоток.

Мишени

Рецепторы инсулина находятся практически на всех клетках организма, кроме нервных, но в разном количестве. Нервные клетки не имеют рецепторов к инсулину, т.к. последний просто не проникает через гематоэнцефалический барьер.

Наибольшая концентрация рецепторов наблюдается на мембране гепатоцитов (100-200 тыс на клетку) и адипоцитов (около 50 тыс на клетку), клетка скелетной мышцы имеет около 10 тысяч рецепторов, а эритроциты - только 40 рецепторов на клетку.

Глюкагон представляет собой гормон полипептидной природы, выделяемый a- клетками поджелудочной железы. Основной функцией этого гормона является поддержание энергетического гомеостаза организма за счет мобилизации эндогенных энергетических рессурсов, этим объясняется его суммарный катаболический эффект.

В состав полипептидной цепи глюкагона входит 29 аминокислотных остатков, его молекулярная масса 4200, в его составе отсутствует цистеин. Глюкагон был синтезирован химическим путем, чем была окончательно подтверждена его химическая структура.

Основным местом синтеза глюкагона являются a-клетки поджелудочной железы, однако довольно большие количества этого гормона образуются и в других органах желудочно-кишечного тракта. Синтезируется глюкагон на рибосомах a-клеток в виде более длинного предшественника с молекулярной массой около 9000. В ходе процессинга происходит существенное укорочение полипептидной цепи, после чего глюкагон секретируется в кровь. В крови он находится в свободной форме. Основная часть глюкагона инактивируется в печени путем гидролитического отщепления 2 аминокислотных остатков с N-конца молекулы.

Секреция глюкагона a-клетками поджелудочной железы тормозится высоким уровнем глюкозы в крови, а также соматостатином, выделяемым D-клетками поджелудочной железы. Стимулируется секреция понижением концентрации глюкозы в крови, однако механизм этого эффекта неясен. Кроме того, секрецию глюкагона стимулируют соматотропный гормон гипофиза, аргинин и Са2+.

Механизм действия глюкагона В механизме действия глюкагона первичным является связывание со специфическими рецепторами мембраны клеток, образовавшийся глю-кагонрецепторный комплекс активирует аденилатциклазу и соответственно образование цАМФ. Последний, являясь универсальным эффектором внутриклеточных ферментов, активирует протеинкиназу, которая в свою очередь фосфорилирует киназу фосфорилазы и гликогенсинтазу.

Фосфорилирование первого фермента способствует формированию активной гликоген-фосфорилазы и соответственно распаду гликогена с образованием глюкозо-1-фосфата, в то время как фосфорилирование гликогенсинта-зы сопровождается переходом ее в неактивную форму и соответственно блокированием синтеза гликогена. Общим итогом действия глюкагона являются ускорение распада гликогена и торможение его синтеза в печени, что приводит к увеличению концентрации глюкозы в крови.

Под действием глюкагона в гепатоцитах ускоряется мобилизация гликогена с выходом глюкозы в кровь. Этот эффект гормона обусловлен активацией гликогенфосфорилазы и ингибированием гликогенсинтетазы в результате их фосфорилирования. Следует заметить, что глюкагон, в отличие от адреналина, не оказывает влияния на скорость гликогенолиза в мышцах.

Глюкагон: во-первых, он ускоряет расщепление белков в печени; во-вторых, увеличивается активность ряда ферментов, таких как фруктозо-1,6-бисфосфатаза,

фосфоенолпируваткарбоксикиназа, глюкозо-6-фосфатаза. также происходит увеличение поступления глюкозы в кровь.

Глюкагон стимулирует липолиз в липоцитах, увеличивая тем самым поступление в кровь глицерола и высших жирных кислот. В печени гормон тормозит синтез жирных кислот и холестерола из ацетил-КоА, а накапливающийся ацетил-КоА используется для синтеза ацетоновых тел. Таким образом, глюкагон стимулирует кетогенез.

В почках глюкагон увеличивает клубочковую фильтрацию, по-видимому, этим объясняется наблюдаемое после введения глюкагона повышение экскреции ионов натрия, хлора, калия, фосфора и мочевой кислоты.

Связь инсулина и глюкагона:

Оба гормона вырабатываются поджелудочной железой для регуляции обмена веществ. Вот, чем они похожи: быстро реагируют на изменение уровня сахара, инсулин вырабатывается при повышении, а глюкагон – при понижении; вещества участвуют в

липидном обмене: инсулин стимулирует, а глюкагон расщепляет, превращая жир в

энергию; участвуют в белковом обмене: глюкагон блокирует поглощение аминокислот организмом, а инсулин ускоряет синтез вещества. Поджелудочная железа вырабатывает и другие гормоны, но нарушения в балансе этих веществ появляются чаще. Функции инсулина Функции глюкагона Снижает показатели глюкозы Превращает гликоген в глюкозу при ее недостатке Стимулирует накопление жировых кислот Расщепляет жир, превращая его в «топливо» для организма Повышает уровень холестерина Понижает уровень холестерина Ухудшает работу печени за счет скопление жирных кислот Улучшает работу печени, восстанавливая клетки Предотвращает расщепление белка в мышцах Стимулирует распад аминокислот Вымывает излишки кальция из организма Усиливает кровообращение в почках, выводит соли натрия, нормализует количество кальция В таблице понятно отображены противоположные роли в регуляции обменных процессов гормонами. Соотношение гормонов в организме Участие в обмене веществ обоих гормонов – залог оптимального уровня энергии, получаемого в результате выработки и сжигания различных компонентов. Взаимодействие гормонов получило название инсулин глюкагонового индекса. Он присваивается всем продуктам и обозначает, что в результате получит организм – энергию или жировые запасы. Если индекс низкий (с преобладанием глюкагона), то при расщеплении компонентов еды основная их часть пойдет на восполнение энергетических запасов. Если еда стимулирует выработку инсулина, то она отложится в жир. Если человек употребляет белковую пищу, то она стимулирует выработку глюкагона, если же поступаю углеводистые продукты, то вырабатывается инсулин. Если в питании преобладает клетчатка из овощей, а также есть полезные растительные жиры, то уровень гормонов не изменится. При гармоничном соотношении всех компонентов пищи баланс гормонов остается на одном уровне. Если человек злоупотребляет белковыми продуктами или углеводами, то это приводит к хроническому понижению одного из показателей. Как следствие, развивается нарушение обмена веществ. Расщепляются углеводы по-разному: простые (сахар, рафинированная мука) – быстро проникают в кровь и вызывают резкий выброс инсулина; сложные (цельнозерновая мука, крупы) – медленно повышают инсулин. Гликемический индекс (ГИ) – способность продуктов влиять на уровень сахара. Чем выше индекс, тем сильнее они повышают глюкозу. Не вызывают резких скачков сахара продукты, ГИ которых равен

35-40. При нарушении обмена веществ из питания исключают продукты, которые обладают максимальным показателем ГИ: сахара, выпечка, рисовая лапша, мёд, печеный картофель, вареная морковь, пшено, хлопья из кукурузы, виноград, бананы, манная крупа. Почему баланс инсулина и глюкагона так важен Действия глюкагона и инсулина тесно связаны, только за счет хорошего баланса гормонов обмен жиров, белков и углеводов остается в норме. Под действием внешних и внутренних факторов – болезней, наследственности, стрессов, питания и экологии – баланс может измениться. Проявляется дисбаланс инсулина и глюкагона следующими признаками: острое чувство голода, даже если человек поел час назад; резкие колебания сахара в крови – он то снижается, но вновь возрастает; масса мышц снижается; настроение часто меняется – от подъема до полной апатии в течение дня; человек набирает вес – на бёдрах, руках, животе. Бороться с причинами и следствиями дисбаланса нужно, так как они приводят к развитию болезней. Для устранения нарушенного уровня гормонов меняют диету. В нее включают больше фруктов и овощей, крупы (кроме пшеничной, рисовой), сокращают потребление животных жиров. А вот растительные липид поддержат обмен веществ. Физические нагрузки – отличный способ профилактики и устранения лишнего веса. Если же дисбаланс долго сохраняется, то у человека возникают болезни: сахарный диабет; сбои в работе нервной системы; снижение мозговой активности; сердечно-сосудистые болезни; ожирения и нарушение пищевого поведения; проблемы с усвоением глюкозы; панкреатит; атеросклероз, гиперлипопротеинемия; нарушение обмена веществ и мышечная дистрофия. При подозрении на гормональный дисбаланс сдают анализы крови, а также получают консультацию эндокринолога. Функции инсулина и глюкагона противоположны, но неразрывны. Если один гормон перестает вырабатываться, как надо, то страдает функциональность второго. Быстрое устранение гормонального дисбаланса медицинскими препаратами, народными средствами и диетой – единственный способ предотвращения болезней.

Гипогликемия – опасное состояние, при котором уровень глюкозы в крови падает ниже нормы. Такое состояние могут вызвать очень тяжелые физические нагрузки, особенно при низкокалорийной диете, особенно на голодный желудок, сильные психологические потрясения, сильные эмоции, голодание или другие системы приемы пищи с большими перерывами между едой и/или малым ее количеством. В таком случае вы можете почувствовать слабость, как в примере выше, тошноту, сильный приступ голода.

Решается все это повышение уровня глюкозы в крови после приема пищи.

Чтобы быстро поднять уровень глюкозы можно использовать быстрые углеводы – сладости, соки, фрукты.

Избыток глюкозы в крови (гипергликемия) – причина инсулинорезистентности – потери чувствительности клеток к инсулину и развития сахарного диабета.

Соседние файлы в предмете Биохимия