Скачиваний:
4
Добавлен:
21.06.2019
Размер:
89.09 Кб
Скачать

Министерство образования и науки Российской Федерации

Федеральное государственное бюджетное образовательное учреждение высшего образования

Пермский национальный исследовательский политехнический университет

Факультет Аэрокосмический

Специальность 24.05.02 Проектирование авиационных

и ракетных двигателей

Специализация Проектирование авиационных двигателей

и энергетических установок

Кафедра Авиационные двигатели

Дисциплина «Уравнения математической физики»

Отчёт о решении задачи №2

На тему

Градиент от скалярного произведения

двух векторов

Студенты

Гамов Антон Сергеевич

(

)

Петров Кирилл Олегович

(

)

Похлебаев Георгий Юрьевич

(

)

Группа

АД-16-2с

Принял

(

доц. каф. АД Матюнин В.П.

)

Дата:

Пермь 2018 г.

ЗАДАНИЕ

Вывести формулу для нахождения градиента скалярного произведения двух векторов.

ВВЕДЕНИЕ

Определимся с понятиями скалярное произведение и градиент. Скалярным произведением двух векторов A и B называется число, равное произведению длин этих векторов на косинус угла между ними:

(1)

Или, выражая в проекциях на оси, получим:

(2)

Градиент - вектор, указывающий направление наибольшего возрастания некоторой величины, значение которой меняется от одной точки пространства к другой, а по величине равный скорости роста этой величины в этом направлении. Математически выражается следующей записью:

(3)

Целью дальнейшей работы станет объединений двух этих понятий в единую формулу.

ФИЗИЧЕСКАЯ МОДЕЛЬ

Скалярное произведение двух векторов часто используется в физике для вычисления какой-либо величины. Поэтому построим модель на основе вычисления механической работы, которая в общем случае равна произведению вектора силы на вектор перемещения:

(4)

МАТЕМАТИЧЕСКАЯ МОДЕЛЬ

Рассмотренную физическую модель можно применить для создания математической модели. Следует учесть, что работа не является векторной величиной, поэтому не имеет направления. Она лишь может оцениваться как полезная, отрицательная и нулевая. Но градиент этой величины всегда будет указывать наибольшую скорость возрастания функции. То есть задача сводится в частном случае, рассматриваемом в данном задании, к вычислению grad(R*S).

РЕШЕНИЕ

Решение данной задачи рассмотрим на конкретном примере: градиент механической работы. Работа находится как скалярное произведение векторов силы и перемещения:

, ()

где R=Rxi+ Ryj+ Rzk, S=Sxi+ Syj+ Szk.

Тогда градиент от их произведения будет иметь вид:

()

Для уменьшения объёма записей произведём вычисления по орту i:

Заметим, что при группировке слагаемых выявляются части ротора, поэтому производим следующие действия:

Выделенные в скобки части являются угловыми скоростями вращения, так есть угловая скорость вращения вектора S вокруг оси, то есть . Аналогично с остальными скобками.

В итоге получаем:

Аналогично получаем для ортов j и k:

Объединяя три компонента, имеем выражение:

Учитывая, что , , , , получаем окончательное выражение:

ОЦЕНКА ДОСТОВЕРНОСТИ И АНАЛИЗ РЕЗУЛЬТАТОВ

ВЫВОДЫ

Соседние файлы в папке Задачи Матюнин