Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ОТветы с 1 по 10.docx
Скачиваний:
11
Добавлен:
06.07.2019
Размер:
53.74 Кб
Скачать

Уровни модели osi Физический уровень.

Физический уровень (Physical layer) имеет дело с передачей битов по физическим каналам связи, таким, например, как коаксиальный кабель, витая пара, оптоволоконный кабель или радиосреда. К этому уровню имеют отношение характеристики физических сред передачи данных, такие, как полоса пропускашся, помехозащищенность, затухание и др.

Канальный уровень.

Одной из задач канального уровня (Data Link layer) является проверка доступности среды передачи, так как физическая среда может быть занята одной из нескольких пар попеременно взаимодействующих компьютеров. Другой - реализащм механизмов обнаружения и коррекщш ошибок. Для этого на канальном уровне биты группируются в наборы, назьгоаемые кадрами. Канальный уровень обеспечивает корректность передачи каждого кадра, для вьщеления обрамляя его специальной последовательностью битов, а также вычисляет контрольную последовательность, добавляя ее к кадру.

При получении кадра адресат снова вычисляет контрольную последовательность. Если принятая с кадром и вычисленная контрольные последовательности совпадают, кадр считается правильным и принимается. Если же они не совпадают, то фиксируется ошибка. Канальный уровень может не только обнаруживать ошибки, но и исправлять их за счет повторной передачи повреждершых кадров. Необходимо отметить, что функция исправления ошибок не является обязательной для канального уровня, поэтому в некоторых протоколах этого уровня она отсутствует, например, в Ethernet и Frame relay.

В компьютерах локальных сетей функции канального уровня реализуются совместными усилиями сетевых адаптеров и их драйверов. Канальный уровень обеспечивает доставку кадра между любыми двумя узлами локальной сети той топологии, для которой он бьш разработан. К таким типовым топологиям, поддерживаемым протоколами канального уровня локальных сетей, относятся общая шина, кольцо и звезда, а также структуры, полученные с помощью мостов и коммутаторов. Примерами протоколов канального уровня являются протоколы Ethernet, Token Ring, FDDI, lOOVG-AnyLAN.

В глобальных сетях, которые редко обладают регулярной топологией, канальный уровень часто обеспечивает обмен сообщениями только между двумя соседними компьютерами, соединенными индивидуальной линией связи. Примерами протоколов «точка-точка» (так часто называют такие протоколы) могут служить широко распространенные протоколы РРР и LAP-B.

Сетевой уровень.

Сетевой уровень (Network layer) служит для образования единой транспортной системы, объединяющей несколько сетей, причем эти сети могут использовать различные принципы передачи сообщений между конечными узлами и обладать произвольной структурой связей.

3. Базовые топологии сетей. Общий сравнительный анализ

Сетевая тополо́гия (от греч. τόπος, - место) — способ описания конфигурации сети, схема расположения и соединения сетевых устройств.

Сетевая топология может быть

  • физической — описывает реальное расположение и связи между узлами сети.

  • логической — описывает хождение сигнала в рамках физической топологии.

  • информационной — описывает направление потоков информации, передаваемых по сети.

  • управления обменом — это принцип передачи права на пользование сетью.

Существует множество способов соединения сетевых устройств. Выделяют 3 базовых топологии:

  • Шина -- ипа общая ши́на, представляет собой общий кабель (называемый шина или магистраль), к которому подсоединены все рабочие станции. На концах кабеля находятся терминаторы, для предотвращения отражения сигнала

  • Кольцо -- это топология, в которой каждый компьютер соединен линиями связи только с двумя другими: от одного он только получает информацию, а другому только передает. На каждой линии связи, как и в случае звезды, работает только один передатчик и один приемник.

  • Звезда -- базовая топология компьютерной сети, в которой все компьютеры сети присоединены к центральному узлу (обычносетевой концентратор), образуя физический сегмент сети. Подобный сегмент сети может функционировать как отдельно, так и в составе сложной сетевой топологии (как правило, «дерево»). Весь обмен информацией идет исключительно через центральный компьютер, на который таким способом возлагается очень большая нагрузка, потому ничем другим, кроме сети, он заниматься не может. Как правило, именно центральный компьютер является самым мощным, и именно на него возлагаются все функции по управлению обменом. Никакие конфликты в сети с топологией звезда в принципе не возможны, потому что управление полностью централизовано.

И дополнительные (производные):

  • Двойное кольцо --  это топология, построенная на двух кольцах. Первое кольцо — основной путь для передачи данных. Второе — резервный путь, дублирующий основной

  • Ячеистая топология --  базовая полносвязная топология компьютерной сети, в которой каждая рабочая станция сети соединяется с несколькими другими рабочими станциями этой же сети. Характеризуется высокой отказоустойчивостью, сложностью настройки и переизбыточным расходом кабеля

  • Решётка -- Это топология, в которой узлы образуют регулярную многомерную решетку. При этом каждое ребро решетки параллельно ее оси и соединяет два смежных узла вдоль этой оси

  • Дерево

  • Fat Tree -- для супер компьютеров

  • Полносвязная --  которой каждая рабочая станцияподключена ко всем остальным. Этот вариант является громоздким и неэффективным, несмотря на свою логическую простоту

Дополнительные способы являются комбинациями базовых. В общем случае такие топологии называются смешанными или гибридными, но некоторые из них имеют собственные названия, например «Дерево».

4. Топологии сетей. Коммутируемая и комбинированная топологии

У систем с коммутируемой топологией нет проблем масштабируемости, свойственных вышеперечисленным шинным архитектурам. В этой архитектуре ЦП подключаются не к НМС (который может отсутствовать), а к коммутатору, соединенному с другими коммутаторами. Механизм подключения может быть как простым (широкая общая шина), так и иерархическим (древовидная иерархическая структура). На основании такой топологии можно проектировать системы с большим количеством ЦП (до 1024).

5. Характеристики линий связи. Полоса пропускания и затухание

 основным характеристикам линий связи относятся: в амплитудно-частотная характеристика;

  • полоса пропускания;

  • затухание;

  • помехоустойчивость;

  • перекрестные наводки на ближнем конце линии;

  • пропускная способность;

  • достоверность передачи данных;

  • удельная стоимость.

В первую очередь разработчика вычислительной сети интересуют пропускная способность и достоверность передачи данных, поскольку эти характеристики прямо влияют на производительность и надежность создаваемой сети. Пропускная способность и достоверность — это характеристики как линии связи, так и способа передачи данных. Поэтому если способ передачи (протокол) уже определен, то известны и эти характеристики. Например, пропускная способность цифровой линии всегда известна, так как на ней определен протокол физического уровня, который задает битовую скорость передачи данных — 64 Кбит/с, 2 Мбит/с и т. п.

Однако нельзя говорить о пропускной способности линии связи, до того как для нее определен протокол физического уровня. Именно в таких случаях, когда только предстоит определить, какой из множества существующих протоколов можно использовать на данной линии, очень важными являются остальные характеристики линии, такие как полоса пропускания, перекрестные наводки, помехоустойчивость и другие характеристики.

Для определения характеристик линии связи часто используют анализ ее реакций на некоторые эталонные воздействия. Такой подход позволяет достаточно просто и однотипно определять характеристики линий связи любой природы, не прибегая к сложным теоретическим исследованиям. Чаще всего в качестве эталонных сигналов для исследования реакций линий связи используются синусоидальные сигналы различных частот. Это связано с тем, что сигналы этого типа часто встречаются в технике и с их помощью можно представить любую функцию времени — как непрерывный процесс колебаний звука, так и прямоугольные импульсы, генерируемые компьютером.

Степень искажения синусоидальных сигналов линиями связи оценивается с помощью таких характеристик, как амплитудно-частотная характеристика, полоса пропускания и затухание на определенной частоте. Полоса пропускания (bandwidth) — это непрерывный диапазон частот, для которого отношение амплитуды выходного сигнала ко входному превышает некоторый заранее заданный предел, обычно 0,5. То есть полоса пропускания определяет диапазон частот синусоидального сигнала, при которых этот сигнал передается по линии связи без значительных искажений. Знание полосы пропускания позволяет получить с некоторой степенью приближения тот же результат, что и знание амплитудно-частотной характеристики. Как мы увидим ниже, ширина полосы пропускания в наибольшей степени влияет на максимально возможную скорость передачи информации по линии связи. Именно этот факт нашел отражение в английском эквиваленте рассматриваемого термина (width — ширина).

Затухание (attenuation) определяется как относительное уменьшение амплитуды или мощности сигнала при передаче по линии сигнала определенной частоты. Таким образом, затухание представляет собой одну точку из амплитудно-частотной характеристики линии. Часто при эксплуатации линии заранее известна основная частота передаваемого сигнала, то есть та частота, гармоника которой имеет наибольшую амплитуду и мощность. Поэтому достаточно знать затухание на этой частоте, чтобы приблизительно оценить искажения передаваемых по линии сигналов. Более точные оценки возможны при знании затухания на нескольких частотах, соответствующих нескольким основным гармоникам передаваемого сигнала.

6. Характеристики линий связи. Помехоустойчивость и достоверность

Помехоустойчивость линии определяет ее способность уменьшать уровень помех, создаваемых во внешней среде, на внутренних проводниках. Помехоустойчивость линии зависит от типа используемой физической среды, а также от экранирующих и подавляющих помехи средств самой линии. Наименее помехоустойчивыми являются радиолинии, хорошей устойчивостью обладают кабельные линии и отличной — волоконно-оптические линии, малочувствительные ко внешнему электромагнитному излучению. Обычно для уменьшения помех, появляющихся из-за внешних электромагнитных полей, проводники экранируют и/или скручивают.

Перекрестные наводки на ближнем конце (Near End Cross Talk — NEXT) определяют помехоустойчивость кабеля к внутренним источникам помех, когда электромагнитное поле сигнала, передаваемого выходом передатчика по одной паре проводников, наводит на другую пару проводников сигнал помехи. Если ко второй паре будет подключен приемник, то он может принять наведенную внутреннюю помеху за полезный сигнал. Показатель NEXT, выраженный в децибелах, равен 10 log Рвых/Рнав, где Рвых — мощность выходного сигнала, РНав — мощность наведенного сигнала.

Чем меньше значение NEXT, тем лучше кабель. Так, для витой пары категории 5 показатель NEXT должен быть меньше -27 дБ на частоте 100 МГц.

Показатель NEXT обычно используется применительно к кабелю, состоящему из нескольких витых пар, так как в этом случае взаимные наводки одной пары на другую могут достигать значительных величин. Для одинарного коаксиального кабеля (то есть состоящего из одной экранированной жилы) этот показатель не имеет смысла, а для двойного коаксиального кабеля он также не применяется вследствие высокой степени защищенности каждой жилы. Оптические волокна также не создают сколь-нибудь заметных помех друг для друга.

В связи с тем, что в некоторых новых технологиях используется передача данных одновременно по нескольким витым парам, в последнее время стал применяться показатель PowerSUM, являющийся модификацией показателя NEXT. Этот показатель отражает суммарную мощность перекрестных наводок от всех передающих пар в кабеле.

Достоверность передачи данных характеризует вероятность искажения для каждого передаваемого бита данных. Иногда этот же показатель называют интенсивностью битовых ошибок (Bit Error Rate, BER). Величина ВЕК для каналов связи без дополнительных средств защиты от ошибок (например, самокорректирующихся кодов или протоколов с повторной передачей искаженных кадров) составляет, как правило, 10-4-10-6, в оптоволоконных линиях связи — 10-9. Значение достоверности передачи данных, например, в 10-4 говорит о том, что в среднем из 10 000 бит искажается значение одного бита.

Искажения бит происходят как из-за наличия помех на линии, так и по причине искажений формы сигнала ограниченной полосой пропускания линии. Поэтому для повышения достоверности передаваемых данных нужно повышать степень помехозащищенности линии, снижать уровень перекрестных наводок в кабеле, а также использовать более широкополосные линии связи.

7. Асинхронная и синхронная передачи

Имеется два основных вида передачи цифровых сигналов, приводящих к двум фундаментально отличающимся способам установки временной базы (тактовой частоты для определения моментов принятия решения) в приемном оконечном устройстве цифровой линии. Первым из этих способов является асинхронная передача, которая состоит в раздельной передаче групп битов или знаков. Внутри отдельной группы для каждого отдельного сигнала используется специальный, определенный заранее временной интервал. Однако моменты передачи групп друг с другом не связаны. Поэтому в приемном оконечном устройстве для приема каждой группы тактовая частота устанавливается заново. При втором способе, называемом синхронной передачей, цифровые сигналы посылаются непрерывно с постоянной скоростью. В этом случае приемное оконечное устройство должно сформировать и поддерживать колебание с тактовой частотой, которое синхронизируется с входящим цифровым сигналом в течение неограниченного периода времени.

8. Передача с установлением соединения и без установления соединения

При передаче кадров данных на канальном уровне используются как дейтаграмм-ные процедуры, работающие без установления соединения(connectionless), так и процедуры с предварительным установлением логического соединения (connection-oriented).

При дейтаграммной передаче кадр посылается в сеть «без предупреждения», и никакой ответственности за его утерю протокол не несет (рис. 2.23, а). Предполагается, что сеть всегда готова принять кадр от конечного узла. Дейтаграммный метод работает быстро, так как никаких предварительных действий перед отправкой данных не выполняется. Однако при таком методе трудно организовать в рамках протокола отслеживание факта доставки кадра узлу назначения. Этот метод не гарантирует доставку пакета.

Передача с установлением соединения более надежна, но требует больше времени для передачи данных и вычислительных затрат от конечных узлов.

В этом случае узлу-получателю отправляется служебный кадр специального формата с предложением установить соединение (рис. 2.23, б). Если узел-получатель согласен с этим, то он посылает в ответ другой служебный кадр, подтверждающий установление соединения и предлагающий для данного логического соединения некоторые параметры, например идентификатор соединения, максимальное значение поля данных кадров, которые будут использоваться в рамках данного соединения, и т. п. Узел-инициатор соединения может завершить процесс установления соединения отправкой третьего служебного кадра, в котором сообщит, что предложенные параметры ему подходят. На этом логическое соединение считается установленным, и в его рамках можно передавать, информационные кадры с пользовательскими данными. После передачи некоторого законченного набора данных, например определенного файла, узел инициирует разрыв данного логического соединения, посылая соответствующий служебный кадр.

Заметим, что, в отличие от протоколов дейтаграммного типа, которые поддерживают только один тип кадра — информационный, протоколы, работающие по процедуре с установлением соединения, должны поддерживать несколько типов кадров — служебные, для установления (и разрыва) соединения, и информационные, переносящие собственно пользовательские данные.

Логическое соединение обеспечивает передачу данных как в одном направлении — от инициатора соединения, так и в обоих направлениях.

Процедура установления соединения может использоваться для достижения различных целей.

  • Для взаимной аутентификации либо пользователей, либо оборудования (маршрутизаторы тоже могут иметь имена и пароли, которые нужны для уверенности в том, что злоумышленник не подменил корпоративный маршрутизатор и не отвел поток данных в свою сеть для анализа).

  • Для согласования изменяемых параметров протокола: MTU, различных тайм-аутов и т. п.

  • Для обнаружения и коррекции ошибок. Установление логического соединения дает точку отсчета для задания начальных значений номеров кадров. При потере нумерованного кадра приемник, во-первых, получает возможность обнаружить этот факт, а во-вторых, он может сообщить передатчику, какой в точности кадр нужно передать повторно.

  • В некоторых технологиях процедуру установления логического соединения используют при динамической настройке коммутаторов сети для маршрутизации всех последующих кадров, которые будут проходить через сеть в рамках данного логического соединения. Так работают сети технологий Х.25, frame relay и ATM.

Как видно из приведенного списка, при установлении соединения могут преследоваться разные цели, в некоторых случаях — несколько одновременно. В этой главе мы рассмотрим использование логического соединения для обнаружения и коррекции ошибок, а остальные случаи будут рассматриваться в последующих главах по мере необходимости.

9. Стеки протоколов. Стек NetBIOS/SMB

NetBIOS (Network Basic Input/Output System) — протокол для работы в локальных сетях на персональных ЭВМ типа IBM/PC, разработан в виде интерфейса, который не зависит от фирмы-производителя. Особенностью NetBIOS является возможность его работы поверх разных протоколов, самыми распространёнными/известными.

SMB (сокр. от англ. Server Message Block) — сетевой протокол прикладного уровня для удалённого доступа к файлампринтерам и другим сетевым ресурсам, а также для межпроцессного взаимодействия

SMB — это протокол, основанный на технологии клиент-сервер, который предоставляет клиентским приложениям простой способ для чтения и записи файлов, а также запроса служб у серверных программ в различных типах сетевого окружения. Единственное отличие от модели клиент-сервер это, когда клиент посылает в качестве запроса оппортунистические блокировки, а сервер вынужден отпустить уже предоставленную блокировку, так как другой клиент запросил открытие файла в режиме, несовместимом с предоставленной блокировкой. В этом случае, сервер посылает клиенту уведомительное сообщение о том, что блокировка была снята. Серверы предоставляют файловые системы и другие ресурсы (принтеры, почтовые сегменты, именованные каналы и т. д.) для общего доступа в сети. Клиентские компьютеры могут иметь у себя свои носители информации, но они так же хотят иметь доступ к ресурсам, предоставленным сервером для общего пользования. SMB может использоваться через TCP/IPNetBEUI и IPX/SPX. Если TCP/IP или NetBEUI будут заняты, то будет использоваться NetBIOS API. Протокол SMB (Server Message Block) выполняет функции сеансового, представительного и прикладного уровней. На основе SMB реализуется файловая служба, а также службы печати и передачи сообщений между приложениями.

10. Стек TCP/IP.

Стек протоколов TCP/IP основан на модели сетевого взаимодействия DOD и включает в себя протоколы четырёх уровней:

  • прикладного (application),

  • транспортного (transport),

  • сетевого (internet),

  • уровня доступа к среде (network access).

Протоколы этих уровней полностью реализуют функциональные возможности модели OSI. На стеке протоколов TCP/IP построено всё взаимодействие пользователей в IP-сетях. Стек является независимым от физической среды передачи данных.

Стек TCP/IP вобрал в себя большое количество протоколов прикладного уровня. К ним относятся такие протоколы, как HTTP, SMTP, SNMP, FTP, telnet, SMB, NFS и многие другие. Данный стек представляет собой один из самых распространенных стеков транспортных протоколов сетей передачи данных. Действительно, только в сети Internet объединено около 10 миллионов устройств по всему миру, которые взаимодействуют друг с другом с помощью стека протоколов TCP/IP. Другой особенностью технологии TCP/IP является гибкая система адресации, позволяющая более просто по сравнению с другими протоколами аналогичного назначения включать в интерсеть сети других технологий. Это свойство также способствует применению стека TCP/IP для построения больших гетерогенных сетей.

21. Преимущества VLAN

VLAN (аббр. от англ. Virtual Local Area Network) — виртуальная локальная компьютерная сеть, представляет собой группу хостов с общим набором требований, которые взаимодействуют так, как если бы они были подключены к широковещательному домену, независимо от их физического местонахождения. VLAN имеет те же свойства, что и физическая локальная сеть, но позволяет конечным станциям группироваться вместе, даже если они не находятся в одной физической сети. Такая реорганизация может быть сделана на основе программного обеспечения вместо физического перемещения устройств.

Преимущества

  • Облегчается перемещение, добавление устройств и изменение их соединений друг с другом.

  • Достигается большая степень административного контроля вследствие наличия устройства, осуществляющего между сетями VLAN маршрутизацию на 3-м уровне.

  • Уменьшается потребление полосы пропускания по сравнению с ситуацией одного широковещательного домена.

  • Сокращается непроизводственное использование CPU за счет сокращения пересылки широковещательных сообщений.

  • Предотвращение широковещательных штормов и предотвращение петель.