Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Методичка 4 семестр заочники.doc
Скачиваний:
131
Добавлен:
27.03.2014
Размер:
3.6 Mб
Скачать

Точка называется существенно особой для функции, еслине существует.

Ряд Лорана в этом случае содержит бесконечное число положительных степеней .

Заметим, что точка называется нулем порядкафункции, если точкаявляется нулем порядкадля функции.

Упражнения

95. Найти нули функции и определить их порядки.

Решение. Полагая , получим, откудаили. Первое уравнение имеет корни. Корнями второго уравнения являются числа.

Итак, точки нули функции.

Определим их порядки. Точки нули 2-го порядка, так как они являются нулями 1-го порядка для функциии. В самом деле, в силу (7.6) получаем

Тогда является нулями 1-го порядка данной функции, так как

при .

96. Найти особые точки функции и выяснить их характер:

а) б)

в) ; г).

Решение. а) Особая точка функции (знаменатель дроби обращается в нуль). Легко видеть, что, значит, согласно (7.2),полюс, причем 3-го порядка, так как по определению (7.3)

.

б) Изолированные особые точки простые полюсы, так как для функцииточкиявляются нулями 1-го порядка. Действительно,

.

в) Особые точки: .

Выясним их характер. Отметим, что в точке обращается в нуль и числитель. Найдем предел функции при

Следовательно, согласно (7.1), точка является устранимой особой точкой. Точкапростой полюс, так как для функцииэта точка является нулем 1-го порядка. В самом деле, функцию можно представить в виде, гдеаналитична в точкеи. Точкитакже являются простыми полюсами, так как для функцииони являются нулями 1-го порядка в силу того, что.

г) в окрестности особой точки дляимеет место следующее разложение:

Главная часть лорановского разложения содержит бесконечно много членов. Следовательно, точка является существенно особой для функции.

Замечание. Исследование функции в существенно особой точке можно произвести лишь с использованием ряда Лорана.

97.Определить характер особой точки для функций:

а) б)

в) г)

Решение. а) Точка устранимая особая точка данной функции, так как

б) точка полюс функциитак какПорядок полюса равен порядку полюса функциив точке, функция жеимеет в точкеполюс 1-го порядка, так как функцияимеет в этой точке нуль 1-го порядка, в чем легко убедиться следующей проверкой:Таким образом,простой полюс данной функции.

в) Разложим данную функцию в ряд Лорана в окрестности точки

Так как главная часть ряда Лорана содержит конечное число положительных степеней и старшая степень равна 3, то особая точкаесть полюс 3-го порядка данной функции.

Упражнения для самостоятельной работы

98. Найти нули функции и определить их порядки:

а) б)

в)

99. Найти изолированные особые точки функции и определить их характер:

а) б)

в) г)

100. Выяснить характер особой для функций

а) б)

в) г)

8. Вычеты и их применение к вычислению контурных интегралов

8.1. Вычет функции и его вычисление

Пусть конечная изолированная особая точка однозначной функцииВычетом функции относительно точки называется число, обозначаемое символоми определяемое равенством

(8.1)

где положительно ориентированный замкнутый контур, лежащий в области аналитичностии содержащий внутри себя одну особую точкуПри обходе контураособая точкаостается слева.

Из определения следует, что вычет функции равен коэффициенту при в лорановском разложении в окрестности точки

(8.2)

Приведем формулы для вычета в полюсах функции, позволяющие избежать разложения функции в ряд Лорана – процесс в общем случае громоздкий.

Если простой полюс функции, то

(8.3)

причем если представима в виде отношения двух аналитических в точкефункцийгдето

(8.4)

Если полюс-го порядкато

(8.5)

Для устранимой особой точки Для нахождения вычета относительно существенно особой точки необходимо найти коэффициент

В некоторых случаях находим применение понятие вычета функции относительно бесконечно удаленной точки.

Пусть аналитична в некоторой окрестности точкикроме, может быть, самой бесконечно удаленной точки. Вычетом функцииотносительно бесконечно удаленной точкиназывают величину

(8.6)

где отрицательно ориентированный замкнутый контур, принадлежащий областианалитичности функции. При обходе контурабесконечно удаленная точкаостается слева.

Из определения следует, что вычет относительно равен коэффициенту прив лорановском разложениив окрестностивзятому с противоположным знаком:

(8.7)

Между утверждениями (8.7) и (8.2), несмотря на их внешнее сходство, имеется существенное различие. Дело в том, что в разложении Лорана в окрестности точки членпринадлежит правильной (а не главной) части ряда, иможет быть отличным от нуля и тогда, когдааналитична в бесконечности.