Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
(11)Лекции.Неинерциальные системы отсчета.doc
Скачиваний:
39
Добавлен:
12.07.2019
Размер:
1.07 Mб
Скачать

18

Неинерциальные системы отсчета.

Неинерциальной системой отсчета (НИСО) называется система, движущаяся ускоренно относительно

инерциальной системы отсчета (ИСО).

Наша задача состоит в том, чтобы найти уравнения движения в НИСО. Поскольку законы движения в инерциальных системах отсчета нам известны, то она сводится к установлению законов преобразования сил и ускорений при переходе от ИСО к НИСО.

В этом разделе мы ограничимся рассмотрением движений, происходящих с малыми скоростями ( ), т.е. останемся в рамках классической механики. Такой подход обусловлен двумя причинами. Во-первых, для задач, которые нам предстоит решать, достаточно формализма классической физики, во-вторых, поскольку математический аппарат релятивистской механики сложен, его использование может привести к неоправданным трудностям в понимании изучаемых физических процессов.

Напомним, что в классической механике длина масштабов и время считаются абсолютными, т.е. во всех системах отсчета время течет одинаково и одинаковы любые выбранные масштабы.

Итак, пусть имеются две произвольные системы отсчета и , движущиеся известным образом относительно друг друга. Заданы скорость и ускорение некоторой точки в системе. Требуется найти соответствующие значения и в системе.

Договоримся произвольно выбранную ИСО, например систему, считать неподвижной, а движение относительно неё условно назовём абсолютным. Движение системы отсчета относительно системы будем называть переносным. Движение тела относительно подвижной системы назовем относительным.

Тогда абсолютное движение тела складывается из его относительного движения и переносного вместе с подвижной системой отсчета.

Наша цель – изучить относительное движение.

Если движущаяся система отсчета инерциальна, то законы движения – это законы Ньютона. Поэтому рассмотрим только те случаи, когда система движется относительно неподвижной системы с ускорением.

1. Система движется поступательно по отношению к системе.

Пусть в системе начало отсчета системы характеризуется радиус-вектором , а её скорость и ускорение – векторами и . Если положение точки в системе определяется радиус-вектором , а в системе – радиус-вектором , то ясно, что .

Пусть далее за промежуток времени точка

совершит в системе элементарное перемещение .

Это перемещение складывается из перемещения вместе

с системой и перемещения относительно

системы, т.е.

. (1)

Поделив это выражение на , получим искомую формулу

преобразования скорости:

. (2)

Продифференцировав полученное выражение по времени, найдем и формулу преобразования ускорения:

. (3)