Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Лаба по пробоям.docx
Скачиваний:
2
Добавлен:
15.07.2019
Размер:
66.4 Кб
Скачать

ФЕДЕРАЛЬНОЕ АГЕНСТВО ПО ОБРАЗОВАНИЮ

ФГАОУ ВПО «Уральский федеральный университет имени первого Президента России Б.Н.Ельцина»

Пробой диэлектриков

Отчет по лабораторной работе №2

по дисциплине «Радиоматериалы и радиокомпоненты»

Подпись

Дата

Ф.И.О.

Преподаватель

____________________

____________

Кудинов С.И.

Группа Р-290601

Студенты:

Рудченко Д.А.

Любезных С.А.

Екатеринбург 2009

Опыт 1. Пробой диэлектриков.

  1. Схема установки:

  2. Электро-магнитный стабилиза-тор

    1

    Высоко-вольтный выпрями-тель

    2

    Регулиру-ющая лампа

    3

    Фильтр

    4

    СТЕНД

    Делитель напряжения

    5

    Выпря-митель ВЧ

    9

    Генератор частоты

    8

    Усилитель постоянного тока

    7

    Опорное напряжение

    6

2.Цель работы

Целью данной работы является ознакомление с пробивными свойствами некоторых диэлектриков, находящихся в электрическом поле.

3.Теория

Диэлектрик, находясь в электрическом поле, теряет свойства изолирующего материала, если напряженность поля превысит некоторое критическое значение. Это явление носит названия пробоя диэлектрика или нарушения его электрической прочности. Напряжение, при котором происходит пробой диэлектрика называется напряжением пробоя Uпр, а соответствующая напряженность – пробивной напряженностью Епр. Пробивное напряжение измеряется в кВ, а пробивная напряженность вычисляется по формуле:

где h – толщина диэлектрика (мм). В данной работе мы исследуем газовый (воздух) и твердые диэлектрики.

3.Исследуемые материалы

  • Бумага. Картон. Конденсаторная бумага.

Важным преимуществом этих материалов является то, что они производятся из возобновляемого сырья, а именно из древесной массы. Технология приготовления состоит из варки щепы и опилок в щелочном растворе с добавками. Целлюлозные волокна разделяются, полученная пульпа загущается удалением некоторого количества воды, из нее удаляются металлические примеси. Затем следует прокатка между вальцами, при повышенных давлении и температуре. Чем выше плотность бумаги, тем выше как механическая, так и электрическая прочность бумаги. Самые тонкие и прочные бумаги используются для изготовления конденсаторов. Достаточно отметить, что плотность конденсаторных бумаг достигает 1.6 т/м3, т.е. более, чем в 1.5 раза превышает плотность воды. При этом электрическая прочность бумаги толщиной 10 мкм, пропитанной трансформаторным маслом, составляет до 10 МВ/см.

Электротехнический картон используется в качестве диэлектрических дистанцирующих прокладок, шайб, распорок, в качестве изоляции магнитопроводов, пазовой изоляции вращающихся машин и т.п. Картон, как правило, используется после пропитки трансформаторным маслом. Электрическая прочность пропитанного картона достигает 40-50 кВ/мм. Поскольку она выше прочности трансформаторного масла, для увеличения электрической прочности трансформаторов зачастую устраивают в среде масла специальные барьеры из картона. Маслобарьерная изоляция обычно имеет прочность Е=300-400 кВ/см. Недостатком картона является гигроскопичность, в результате попадания влаги уменьшается механическая прочность и, резко уменьшается электрическая прочность (в 4 и более раз)

  • Полиэтилен

Полиэтилен производят путем полимеризации газа этилена при повышенных давлениях и температурах. В основном используются две технологии. Исторически первой была технология получения полиэтилена при высоком давлении до 250 МПа и температуре до 300 °С с помощью инициирующих агентов-окислителей. При этом получается т.н. полиэтилен высокого давления ПЭВД, для которого используется и другое название - полиэтилен низкой плотности (ПЭНП). В настоящее время более распространена технология получения полиэтилена с помощью катализаторов при невысоком давлении до 1 МПа, невысокой температуре до 80 °С. При этом получается т.н. полиэтилен низкого давления ПЭНД, для которого используется и другое название - полиэтилен высокого плотности (ПЭВП). Главное отличие полученных продуктов с физико-химической точки зрения - повышенная водостойкость ПЭНД по сравнению с ПЭВД. Другие характеристики практически одинаковы: удельное сопротивление 1014-1015 Ом×м, удельное поверхностное сопротивление 1015 Ом, диэлектрическая проницаемость 2.2-2.4, тангенс угла диэлектрических потерь 10-4, электрическая прочность 45-55 кВ/мм, теплопроводность 0.3-0.4 Вт/(м×К), теплоемкость 2 кДж/(кг×К), плотность 920-960 кг/м3. Класс нагревостойкости Y. Полиэтилен широко используют в качестве силовой электрической изоляции в кабелях, в особенности т.н. "сшитый" полиэтилен. Его получают либо облучением высокоэнергетичными частицами (электронами, фотонами, тяжелыми частицами), либо вулканизацией. При этом образуется пространственная сетка, подобно тому, как это реализуется в резине. Модифицированный материал может эксплуатироваться при температуре до 200 °С, кроме того, он становится более стойким по отношению к агрессивным средам и растворителям, механически более прочным, его удельное сопротивление повышается примерно на два порядка.

Материал для производства плёнок (особенно упаковочных), тары, труб, деталей технической аппаратуры, диэлектрических антенн, предметов домашнего обихода и др.; электроизоляционный материал.

  • Лавсан

Продукт поликонденсации этиленгликоля с терефталевой кислотой (или её диметиловым эфиром); твёрдое, бесцветное, прозрачное вещество в аморфном состоянии и белое, непрозрачное в кристаллическом состоянии. Переходит в прозрачное состояние при нагреве до температуры стеклования и остаётся в нём при резком охлаждении и быстром проходе через т. н. «зону кристаллизации». Одним из важных параметров ПЭТ является «присущая вязкость» определяемая длиной молекулы полимера. С увеличением присущей вязкости скорость кристаллизации снижается. Прочен, износостоек, хороший диэлектрик

В России полиэтилентерефталат используют главным образом для изготовления заготовок (прессформ) различного вида, из которых затем изготавливаются (выдуваются после нагрева) пластиковые контейнеры различного вида и назначения (в первую очередь, пластиковые бутылки). В меньшей степени применяется для переработки в волокна (см. Полиэфирное волокно), плёнки, а также литьём в различные изделия. В мире ситуация обратная: большая часть ПЭТФ идет на производство нитей и волокон. Многообразно применение заготовок и Полиэтилентерефталата в машиностроении, химической промышленности, пищевом оборудовании, транспортных и конвейерных технологиях, медицинской промышленности, приборостроении и бытовой технике.

  • Стирофлекс (Полистирол)

Продукт полимеризации стирола (винилбензола) относится к полимерам класса термопластов. Промышленное производство полистирола основано на радикальной полимеризации стирола. Различают 3 основных способа его получения: эмульсионный (ПСЭ), суспензионный (ПСС), блочный или получаемый в массе (ПСМ).

Высокие электротехнические показатели полистирола в области сверхвысоких частот позволяют применять его в производстве: диэлектрических антенн, опор коаксиальных кабелей. Могут быть получены тонкие пленки (до 100 мкм), а в смеси с со-полимерами (стирол-бутадиен-стирол) до 20 мкм, которые также успешно применяются в упаковочной и кондитерской индустрии, а также производстве конденсаторов.

Ударопрочный полистирол и его модификации получили широкое применение в сфере бытовой техники и электроники (корпусные элементы бытовых приборов).

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]