Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
стоячие волны.doc
Скачиваний:
2
Добавлен:
18.07.2019
Размер:
131.07 Кб
Скачать

Чтобы вызвать звук необходимо произвести колебания. Чтобы получить музыкальный звук необходимо, чтобы колебания имели постоянную частоту, т.е. стабильную высотность, которой исполнитель мог бы легко управлять. В электроинструментах стабильные и управляемые колебания получают с помощью электроники, у неэлектрических - за счет стоячих волн. Мы будем рассматривать колебания на примере струн, поскольку здесь они более наглядны, чем колебания воздуха в духовых инструментах, и менее сложны по сравнению с колебаниями дощечек и кожи ударных инструментов.

Натянутые струны скрипки, фортепиано и т.д. колеблются столь быстро, что разглядеть что-либо невозможно. Однако, можно провести несколько любопытных экспериментов, позволяющих понять работу струн с помощью нескольких метров гибкого резинового шланга. Садовый поливной шланг для этого недостаточно гибок, лучше всего взять резиновый шланг или длинную бельевую веревку. Привяжите или прижмите один конец шланга, а другой слегка натяните одной рукой (сильно натягивать не нужно, небольшой прогиб не страшен). Теперь другой рукой оттяните шланг в сторону, чтобы образовался выступ, и, отпустив его, вы увидите в замедленном темпе то, что происходит при щипке струны. Можно наблюдать, как выступ пробежит вдоль "струны" и вернется обратно. При возврате он толкнет Вашу руку, но если Вы держите "струну" крепко, произойдет новое отражение.

Первое, что Вы должны заметить, это то, что скорость движения волны по струне возрастает с увеличением ее натяжения. Это свойство используется при настройке инструментов, но сейчас мы не будем на этом останавливаться. Скорость движения волны зависит и от "веса" струны - в более толстой, тяжелой струне (при равной длине и натяжении) она будет медленнее, чем в легкой.

Теперь остановимся на отражении, которое происходит на закрепленном конце. Заметьте, что если оттягивать струну влево, то выступ побежит с левой стороны, но при возврате будет расположен справа - при отражении происходит инвертирование. Этот эффект наблюдается не только в струнах, но и в духовых и ударных. Волна инвертируется в момент, когда сталкивается с какой-либо неподвижной или трудно преодолимой преградой.

 

Несмотря на то, что струны музыкального инструмента закреплены с обоих концов, наблюдаемые процессы при щипке струны в них будут аналогичными. Сперва струна оттягивается в некой точке, а затем отпускается, как показано на рисунке. Если приглядеться, можно различить форму, которую образует бегущий выступ (показано тонкой линией на рисунках ниже), движущийся вдоль струны в обоих направлениях. Для наблюдений лучше использовать басовые струны, оттягивая их в нескольких миллиметрах от точки крепления. Фигура, образованная бегущим выступом, видна лучше, чем сама струна, потому что точку покоя, в которой происходит смена направлений, выступ проходит мгновенно, а к краям его движение замедляется.

 

 

Схема движения выступа, образованного при щипке струны. Жирной линией показана сама струна, тонкой - фигура, образованная движением выступа. В фазах, отмеченных буквами (d) и (j), струна представляет прямую линию. В эти моменты потенциальная энергия ее колебаний исчерпана, а кинетическая энергия максимальна. Заметим, что в момент отражения положение выступа меняется на 180 градусов с верхнего на нижний или наоборот. Обратите внимание на проход выступов одного "сквозь" другой в момент, когда они встречаются посередине.

 

 

Схема, показывающая отражение движущихся выступов, при возбуждении струны смычком.

 

Отчего при отражении происходит инвертирование? Поскольку струна закреплена на неподвижном объекте, то и точка отражения является неподвижной. Теперь посмотрите на движение струны на левых рисунках, отражающих ее положение в разное время. Видно как часть струны позади выступа возвращается к своему первоначальному состоянию (на рисунках - вниз). Чем ближе выступ к концу струны, тем он становится меньше, и при его достижении он исчезает - в этот момент струна становится прямой. Однако движение струны вниз не прекращается, и, пройдя точку покоя, она образует обратный выступ, который начинает движение в обратном направлении.

Если раскачивать вверх-вниз незакрепленный конец струны, можно наблюдать один интересный эффект. С помощью резинового шланга можно проделать этот опыт самостоятельно. Если такой возможности у Вас нет, то взгляните на представленную ниже диаграмму. Мы опять видим инвертирование отраженной волны, из-за чего после отражения мы получаем уже две волны (с одинаковой частотой и амплитудой), которые движутся в противоположных направлениях. В точке крепления струны где они складываются, движение прекращается, т.е. имеет место нулевое перемещение, благодаря которому и возникает инвертированное отражение. Но если вы посмотрите на сплошную линию на диаграмме (представляющую собой результат суммирования двух волн), то увидите, что на струне есть и другие неподвижные точки. Эти равноудаленные друг от друга точки, играющие важнейшую роль в функционировании любого музыкального инструмента, называются "узлами" (node) вибрации. Посередине между узлами располагаются "пучности" (antinode) - зоны максимального движения. Обратите внимание, что эти выступающие зоны не движутся по струне. При сложении двух волн, бегущих в противоположных направлениях, образуется стоячая волна.

 

Две движущиеся волны при слиянии образуют стоячие волны.

 

Посмотрите на рисунок, который представляет последовательность фаз движения волн во времени (время течет сверху вниз). Синяя волна движется вправо, зеленая влево, красная волна является суммирующей и показывает, что происходит при столкновении двух волн (по научной терминологии - при наложении). Отмечены положения (узлы/nodes) в которых обе движущиеся волны нейтрализуют друг друга и другие зоны (пучности/antinodes), в которых происходит сложение волн, и колебания обладают максимальной амплитудой.

Можно сказать, что приведенная выше диаграмма представляет  колебание 5-й гармоники струны, длина которой равна ширине диаграммы. Здесь мы коснулись темы, которая будет освещена в следующей главе.

 

Гармоники и моды (типы) колебаний

На музыкальном инструменте струна закреплена с обоих концов, которые ограничивают возможные колебания и на которых во время колебаний расположены узлы. Струна, имеющая длину L, образует стоячую волну, длина которой равна удвоенной длине струны (длина волны = 2L), что демонстрируется на первом из рисунков следующей серии. При этом узлы расположены на концах струны, а пучность посередине между ними. Это одна из мод ("мода" - тип колебаний струны). Какие еще моды встречаются на струне, закрепленной с обоих концов? Ниже приводятся примеры таких стоячих волн.

 

 

Рисунки демонстрируют первые четыре моды колебаний идеальной* закрепленной струны (увеличено по вертикали).

 

В каком соотношении находятся моды колебаний? Частота колебаний волны равна отношению ее скорости к длине: f=v/длина волны. Таким образом, для струны длиной L, длины волн составят 2L, L, 2L/3, L/2, что можно записать так 2L/n, где n - номер гармоники.

 

Базовая частота или 1-я мода имеет частоту f1= v/длина волны = v/2L

Частота 2-й гармоники f2= v/l2 = 2v/2L = 2f1

Частота 3-й гармоники f3= v/l3 = 3v/2L = 3f1

Частота 4-й гармоники f4= v/l4 = 4v/2L = 4f1 ...

 

fn= v/ln = nv/2L = nf1

 

Все волны движутся по струне с одинаковой скоростью, поэтому волны с различными длинами имеют разные частоты, как показано на рисунках. Мода самой нижней  частоты (f1) называется базовой. Частота n-ной моды будет в n раз больше базовой. Все эти моды (как и звуки, которые они образуют) называются гармониками струны. Частоты f, 2f, 3f, 4f и т.д. называется последовательностью гармоник. Музыканты хорошо знакомы с этими последовательностями, особенно те, кто играют на натуральных горнах или знакомы с флажолетами. Если для примера мы возьмем базовую частоту соответствующую ноте С3, т.е. альтовой До (частота = 131Гц), то ее гармоники будут иметь высотности, показанные на следующем рисунке. Высотность нот дана в приближении до четверти тона. При этом октавы являются чистыми, а вот другие интервалы не совсем соответствуют равномерно темперированному строю.

 

Нотное написание первых 12-ти гармоник (флажолетов) на примере ноты До. При прослушивании звукового файла (записанного в форматах au и wav) обратите внимание на высотность звуков.

Седьмая и одиннадцатая гармоники приходятся почти посередине между нотами равномерно темперированного строя, поэтому обозначены с половинками диезов.

Вы сами можете получить эти звуки на струнах. Проще это сделать на басовых струнах гитары, виолончели или контрабаса*. Для этого коснитесь слегка струны в точке, которая отстоит на длину =1/n от ее конца (где n = 1,2,3 и т.д.), а затем проведите смычком. Или слегка коснитесь струны в точке, которая приходится на длину =1/n от ее конца, ударьте по струне недалеко от подставки и мгновенно отдерните прижатый палец. Благодаря касанию, в точке произойдет образование узла, который образует моду, имеющую узел в данной точке. Вы легко сможете найти на струне от двух до шести флажолетов (если Вы только что проделали этот эксперимент, то, наверное, обратили внимание, на то. что двенадцатый лад, отвечающий за получение октавы, расположен менее, чем на половине длины струны, поэтому то место, где Вы касались струны для получения 2-й гармоники, находится не совсем точно над этим ладом). 

*"Идеальной" я называю струну, которая, обладая абсолютной гибкостью, позволяет оттягивать ее без усилий в любом месте. Но поскольку реальные струны обладают жесткостью, их рабочая длина (которую мы обозначали в формулах буквой L) немного меньше физической длины, и это одна из причин почему на басовых струнах применяется обмотка, а голая струна G (соль) классической гитары плохо строит в верхних позициях.