Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Энергетический обмен.doc
Скачиваний:
7
Добавлен:
14.08.2019
Размер:
115.71 Кб
Скачать

Лекция N 2

Тема лекции: Энергетический обмен

Все процессы, происходящие в организме, можно разбить на 3 группы: пластические, энергетические, информационные.

Использование химической энергии в организме называют энергетическим обменом.

В процессе обмена веществ постоянно происходит превращение энергии: потенциальная энергия сложных органических соединений, поступивших с пищей, превращается в тепловую, механическую и электрическую.

За счет освобождающейся в организме энергии поддерживается определенная постоянная температура тела и совершается внешняя работа. Наиболее емким потреблением энергии в организме можно считать процесс движения, а также сердечную деятельность дыхание, перистальтику кишечника и др. За счет окислительных процессов в сердечной мышце освобождается энергия, которая используется для сокращения миокарда, которая передается крови что, позволяет ей двигаться по сосудам.

Каждая живая клетка нашего организма нуждается в поступлении определенного количества энергии, которая необходима для поддержания нормальной структуры(15% - ФТФ), уровня функциональной готовности (50%-АТФ) и активности(100%-АТФ), а так же для выполнения специфических функций.

Часть заключенной в питательных веществах химической энергии преобразуется в другие биологически полезные формы - электрическую, осмотическую, механическую. Основная часть энергии выделяется в виде тепла.

В основе процессов обмена энергии лежат законы термодинамики - взаимных превращений различных видов энергии при переходах ее от одних тел к другим в форме теплоты или работы. С точки зрения термодинамики живые организмы относятся к открытым стационарным неравновесным системам. Это означает, что:

• во-первых, они обмениваются с окружающей средой веществом и энергией;

• во-вторых, способны в течение определенного времени удерживать свои основные параметры, но вместе с тем под влиянием внешней среды переходить из одного стационарного состояния в другое в пре- делах колебаний жизненно важных констант, допустимых для сохра- нения жизни;

• в-третьих, благодаря наличию в организме множества градиентов (диффузионные, температурные) и потенциалов (химические, элек- трические) и возникающих вследствие их действия потоков (диффу- зионные, тепловые, метаболические, энергетические) создаются ус- ловия для неравновесного распределения вещества и энергии между живыми системами и окружающей средой.

Принцип устойчивого неравновесия живых систем [Бауэр, 1935] гласит:

«Живые системы никогда не бывают в равновесии и исполняют за счет своей свободной энергии постоянную работу против равновесия, требуемого законами физики и химии».

Законы термодинамики

Первый закон термодинамики закон сохранения и превращения энер-

ни [Ломоносов М.В., 1748]:

Энергия не исчезает и не творится вновь, а только переходит из одной

формы в другую: механическая работа, кинетическая энергия и теплота могут превращаться друг в друга.

Согласно первому закону термодинамики. Количество теплоты, полученное системой, затрачивается на повышение ее внутренней энергии U и на работу А, совершаемую против действия внешних сил.

В 1783 г. А. Лавуазье и П. Лаплас показали, что первый закон термодинамики приложим к живым системам. Поместив в изолированную камеру с кусочками льда (ледяная рубашка) морскую свинку, они расчитали теплопродукцию животного на основе измерения количества талой воды. Общее количество тепла, теряемое животным, оказалось равным количеству тепла, поглащенному водой, затраченному на испарение выдыхаемой с воздухом влаги и влаги выделяемой на поверхности тела, т. е. cкрытой теплоте парообразования.

Второй закон термодинамики (Больцман, 1880) гласит:

Если любой вид энергии можно трансформировать в эквивалентное количество тепла, то в случае обратного превращения полная трансформация невозможна

Свободная энергия способна к превращениям и к совершению полезной работы. Связанная энергия составляет ту «непроизводительную» часть, которая не переходит в другие формы и рассеивается в виде тепла, характеризуя меру термодинамической неупорядоченности системы, называемую энтропией.

Для характеристики функций системы, определяющих ее теплосодержание, пользуются понятием энтальпией. Все химические реакции в организме сопровождаются изменением энтальпии, выражаемым Н. Существуют экзотермические реакции и эндотермические.

Коэффициент полезного действия живой клетки

При совершении любого вида работы, значительная часть вырабатываемой энергии теряется в виде теплоты, так при мышечной работе освобождается тепловая и механическая энергия. Отношение механической работы ко всей энергии, затраченной на работу, выраженное в процентах, называется коэффициентом полезного действия (КПД) :

Внешняя работа

КПД =------------------------------------х 100%

Вырабатываемая энергия

При физическом труде человека КПД колеблется от 16 до 25 % и в среднем составляет 20 %. При мышечном сокращении, например, 80% энергии теряется в виде теплоты и только 20 % превращается в механическую работу. КПД изменяется в зависимости от ряда условий. Так, у нетренированных людей он ниже, чем у тренированных, и увеличивается по мере тренировки.

Первичная и вторичная теплота.

Теплоту, выделяемую организмом, условно делят на два типа.

Теплообразование в организме имеет 2-х фазный характер. При окислении белка, жира, углеводов одна часть используется для синтеза АТФ, другая превращается в теплоту – это первичная теплота.

Первичная теплота постоянно высвобождается в ходе клеточного метаболизма при окислении веществ вне зависимости от того, совершается внешняя работа или нет. Ее количество является показателем интенсивности основного обмена, обеспечивающего клеточный метаболизм и функционирование жизненно важных органов.

В нормальных условиях клетки получают энергию главным образом путем окислительного (аэробного) распада питательных веществ.

Так при окислении углеродов 22,7 % идет на синтез АТФ, 77,3 % в форме первичной теплоты рассеивается в тканях.

При распаде АТФ тоже выделяется теплота - это вторичная теплота.

Вторичная теплота выделяется при совершении организмом любой

работы за счет резерва аккумулированной энергии АТФ, образующегося

в результате метаболических превращений питательных веществ.

В физиологических условиях оба вида теплоты находятся в относительном равновесии. Первичная теплота непрерывно рассеивается в окружающую среду, даже если температура последней превышает температуру тела. Это возможно благодаря механизмам саморегуляции, в частности потоотделению и испарению, предотвращающим перегревание организма.

При переохлаждении же оптимальное для метаболизма количество первичной теплоты обеспечивается за счет увеличения доли вторичной теплоты вследствие усиления двигательной активности, и особенно при появлении непроизвольной дрожи (дрожательный термогенез).

Единицы измерения энергетического обмена.

Энергетические затраты учитывают по количеству тепла, выделяемого организмом в единицу времени. Единицей измерения энергии в Международной системе единиц (СИ) является джоуль (Дж) или килоджоуль (кДж).

В физиологических и медицинских исследованиях для определения количества энергии, выделенной организмом, используют внесистемные единицы — калорию (кал) или килокалорию (ккал); 1 кал = 4,19 кДж.

Калория — количество энергии (тепла), необходимое для повышения температуры 1 г воды на 1 °С.

Энергетическая ценность питательных веществ. Сложные органические молекулы, окисляясь в присутствии кислорода (аэробное окисление) до двуокиси углерода и воды, выделяют заключенную в их химических связях энергию.

Согласно закону Гесса, количество энергии, выделяемое при распаде какого-либо вещества до конечных продуктов, не зависит от числа промежуточных этапов его трансформации. Следовательно, не имеет значения, окисляется ли вещество полностью в организме или сго­рает в специальной камере в присутствии чистого кислорода (калориме­трическая бомба Бертло), — 1 моль вещества дает одинаковое количество энергии.