Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Курсовая по химии.doc
Скачиваний:
36
Добавлен:
01.05.2014
Размер:
120.83 Кб
Скачать

Свойства соединений титана.

Оксиды титана:

Ti(IV) –TiO2– Двуокись титана. Имеет амфотерный характер. Наиболее устойчив и имеет наобольшее практическое значение.

Ti(III) –Ti2O3– окись титана. Имеет основной характер. Устойчив в растворе и является сильным восстановителем, как и остальные соединенияTi(III).

TI(II) –TiO2- Закись титана. Имеет основной характер. Наименее устойчив.

Двуокись титана, ТiO2, — соединение ти­тана с кислородом, в котором титан четырёхвалентен. Белый порошок, желтый в нагретом состоянии. Встречается в природе главным образом в виде минерала ру­тила, t°плвыше 1850°. Плотностъ 3,9 — 4,25 г/см3. Практически нерастворима в щелочах и кислотах, за исключениемHF. В концентрированной Н2SO4растворяется лишь при длительном на­гревании. При сплавлении двуокиси титана с едкими или угле­кислыми щелочами образуются титанаты, которые легко гидролизуются с образованием на холоду ортотитановой кислоты (или гидрата)Ti(OH)4, легко рас­творимой в кислотах. При стоянии она переходит в мстатитановую кислоту (форма), имеющую микрокристаллическую структуру и растворимую лишь в горя­чей концентрированной серной и фтористоводородной кислотах. Большинство титанатов практически нерастворимы в воде. Основные свойства двуокиси титана выра­жены сильнее кислотных, но соли, в которых титан является катионом, также в значительной мере гид­ролизуются с образованием двухвалентного радикала титанилаTiO2+. Последний входит в состав солей в качестве катиона (например, сернокислый титанилTiOSO4*2H2O). Двуокись титана является одним из важнейших соединений титана, служит исходным материа­лом для получения других его соединений, а также частично металлического титана. Используется главным образом как минеральная краска, кроме того, как наполнитель в производстве резины и пластических металлов. Входит в состав тугоплавких стекол, глазурей, форфоровых масс. Из нее изготов­ляют искусственные драгоценные камни, бесцветные и окрашенные.

Диоксид титана не растворяется в воде и разбавленных минеральных кислотах (кроме плавиковой) и разбавленных растворах щелочей.

Медленно растворяется в концентрированной серной кислоте:

TiO2+ 2H2SO4 = Ti(SO4)2 + 2H2O

С пероксидом водорода образует ортотитановую кислоту H4TiO4:

TiO2+ 2H2O2= H4TiO4

В концентрированных растворах щелочей:

TiO2+ 2NaOH = Na2TiO3+ H2O

При нагревании диоксид титана с аммиаком образует нитрид титана:

2TiO2 + 2NH3 = 2TiN + 3H2O + O2

В насыщенном растворе гидрокарбоната калия:

TiO2 + 2KHCO3 = K2TiO3 + H2O + 2CO2

При сплавлении с оксидами, гидроксидами и карбонатами образуются титанаты и двойные оксиды:

TiO2 + BaO = BaO∙TiO2(BaTiO3)

TiO2 + BaCO3 = BaO∙TiO2 + CO2(BaTiO3)

TiO2 + Ba(OH)2 = BaO∙TiO2(BaTiO3)

Гидроксиды титана:

H2TiO3– П.Р. = 1,0∙10-29

H2TiO4 - П.Р. = 3,6∙10-17

TIO(OH)2 - П.Р. = 1,0∙10-29

Ti(OH)2 - П.Р. = 1,0∙10-35

Гидроскида Ti(IV) –Ti(OH)4или H4TiO4- ортотитановой кислоты по видимому вообще не существует, а осадок, выпадающий при добавлении оснований к растворам солейTi(IV), представляет собой гидратированную формуTiO2. Это вещество растворяется в кончентрированных щелочах, и из таких растворов можно выделить гидратированные титанаты общей формулы:M2TiO3∙nH2OиM2Ti2O5∙nH2O.

Для титана характерно комплексообразование с соответствующими галогеноводородными кислотами и особенно с их солями. Наиболее типичны комплексные производные с общей формулой Мe2TiГ6(где Мe— одновалентный металл). Они хорошо кристаллизуются и подвергаются гидролизу гораздо менее, чем исходные галогенидыTiГ4. Это указывает на устойчивость комплексных ионовTiГ6в растворе.

Окраска производных титана сильно зависит от природы входящего в них галогена:

Устойчивость солей комплексных кислот типа Н2ЭГ6, в общем, возрастает по ряду Ti-Zr-Hf и уменьшается в ряду галогенов F-Cl-Br-I.

Производные трёхвалентных элементов более или менее характерны лишь для титана. Тёмно-фиолетовый оксид Тi2O3(т. пл. 1820 °С) может быть получен прокаливанием TiO2до 1200 °C в токе водорода. В качестве промежуточного продукта при 700-1000 °С образуется синий Ti2O3.

В воде Ti2O3практически нерастворим. Его гидроксид образуется в виде тёмно-коричневого осадка при действии щелочей на растворы солей трёхвалентного титана. Он начинает осаждаться из кислых растворов при рН = 4, имеет только основные свойства и в избытке щелочи не растворяется. Однако производящиеся от HTiO2титаниты металлов (Li, Na, Mg, Mn) были получены сухим путём. Известна также сине-чёрная “титановая бронза” состава Na0,2TiO2.

Гидроксид титана (III) легко окисляется кислородом воздуха. Если в растворе нет других способных окисляться веществ, одновременно с окислением Ti(OH)3идёт образование пероксида водорода. В присутствии Са(ОН)2(связывающего Н2О2) реакция протекает по уравнению:

2Ti(ОН)3 + O2 + 2H2O = 2Ti(OH)4 + H2O2

Азотнокислые соли Тi(OH)3восстанавливает до аммиака.

Фиолетовый порошок ТiCl3может быть получен пропусканием смеси паров ТiCl4c избытком водорода сквозь нагретую до 650 °С трубку. Нагревание вызывает его возгонку (с частичным образованием димерных молекул Ti2Cl6) и затем дисмутацию по схеме:

2TiCl3= TiCl4+ TiCl2

Интересно, что уже при обычных условиях тетрахлорид титана постепенно восстанавливается металлической медью, образуя чёрное соединение состава CuTiCl4(т. е. СuCl·TiCl3).

Трёххлористый титан образуется также при действии на TiCl4водорода в момент выделения (Zn + кислота). При этом бесцветный раствор окрашивается в характерный для ионов Ti3+фиолетовый цвет, и из него может быть выделен кристаллогидрат состава ТiCl3·6H2O. Известен и малоустойчивый зелёный кристаллогидрат того же состава, выделяющийся из насыщенного HCl раствора TiCl3. Структуре обеих форм, равно как и аналогичных кристаллогидратов СrCl3, отвечают формулы [Ti(Н2O)6]Cl3и [Ti(Н2O)4Cl2]Cl·2Н2О. При стоянии в открытом сосуде раствор TiCl3постепенно обесцвечивается ввиду окисления Ti3+до Ti4+кислородом воздуха по реакции:

4TiCl3 + O2 +2H2O = 4TiOCl2 + 4HCl.

Ион Тi3+ является одним из очень немногих восстановителей, довольно быстро восстанавливающих (в кислой среде) перхлораты до хлоридов. В присутствии платины Тi3+окисляется водой (с выделением водорода).

Безводный Ti2(SO4)3имеет зелёный цвет. В воде он нерастворим, а раствор его в разбавленной серной кислоте имеет обычную для солей Ti3+фиолетовую окраску. От сульфата трёхвалентного титана производятся комплексные соли, главным образом типов Мe[Ti(SO4)2]·12H2O (где Мe— Сs или Rb) и Me[Ti3(SO4)5] (с переменным в зависимости от природы катиона содержанием кристаллизационной воды).

Теплота образования TiO (т. пл. 1750 °С) составляет 518 кДж/моль. Он получается в виде золотисто-жёлтой компактной массы нагреванием в вакууме до 1700 °С спрессованной смеси TiO2+ Ti. Интересным способом его образования является термическое разложение (в высоком вакууме при 1000 °С) нитрила титанила. Похожий по виду на металл, тёмно-коричневый TiS получен прокаливанием TiS2в токе водорода (первоначально при этом образуются сульфиды промежуточного состава, в частности Ti2S3). Известны также TiSe, TiTe и силицид состава Ti2Si.

Все TiГ2образуются при нагревании соответствующих галогенидовTiГ3без доступа воздуха за счёт их разложения по схеме:

2TiГ3=TiГ4+TiГ2

При несколько более высоких температурах галогениды TiГ2сами подвергаются дисмутации по схеме: 2TiГ2=TiГ4+Ti

Двухлористый титан может быть получен также восстановлением TiCl4 водородом при 700 °С. Он хорошо растворим в воде (и спирте), а с жидким аммиаком даёт серый аммиакат TiCl2·4NH3. Раствор TiCl2может быть получен восстановлением TiCl4 амальгамой натрия. В результате окисления кислородом воздуха бесцветный раствор TiCl2быстро буреет, затем становится фиолетовым (Ti3+) и, наконец, вновь обесцвечивается (Ti4+). Получаемый действием щёлочи на раствор TiCl2чёрный осадок Ti(OH)2исключительно легко окисляется.

Соседние файлы в предмете Химия