Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Числовые множества.doc
Скачиваний:
16
Добавлен:
01.05.2014
Размер:
270.34 Кб
Скачать

§2 Множество комплексных чисел(к.Ч.) : определения, аксиомы, комплексная плоскость; rìc.

Пусть. Рассмотримупорядоченную пару вещественных чисел z=(x,y) (2,3)(3,2).

Определение 1. Множеством комплексных чисел(к.ч.) С называют множество упорядоченных пар вещественных чисел C={z=(x, y); x,yÎR}, над элементами которого определены операции - аксиомы к. чисел :

Z=(X,Y); Z1=(X1,Y1); Z2=(X2,Y2) 

1)равенства : z1=z2 Û x1=x2; y1=y2;

(x+y,2-y)=(3,1) x=2  y-1

2)сложения(вычитания):z=z1 ± z2 Û x = x1 ± x2; y=y1 ± y2;(1,2)+(2,-3)=(3,-1)

3)умножения на вещественное число cÎR : z= cz1 Û x = cx1; y = cy1;

2*(1,2)=(2,2)

4)умножения : z = z1z2 Û x = x1x2 - y1y2; y = x1y2 +x2y1;

(1,2)*(2,-3)=(8,1)

Определения.

2.

3. К. числа z=(x,y) и z*=(x,-y) называются комплексно сопряженными: z=(1,-1)z*=(1,-1).

4. Неотрицательное вещественное число называетсямодулем к. числа z=(x,y): |(1,-1)|=

Следствия.

(1) - комплексный ноль0.

(2) - комплексная единица.

(3)

(4) Деление и возведение в натуральную степень определим в С через операции умножения и равенства к. чисел:

-------------------------------------

Введем на плоскости прямоугольную систему координат, координатные оси которой назовем, соответственно, вещественной x=Re(z) и мнимой y=Jm(z) осями, и будем называть эту плоскость комплексной плоскостью . Между точками и множеством С существует взаимно-однозначное соответствие, поэтому будем в дальнейшем отождествлять к. число и соответствующую точку к. плоскости M(x,y)z=(x,y)C.

------------------------------------------------

Рассмотрим подмножество к. чисел с нулевой мнимой частью {(x,0)}ÌC.

Из аксиом (1-3) следует, что результаты арифметических операций над такими числами являются элементами этого же множества (Д/З –проверьте самостоятельно!). Кроме того, на к. числа вида (x,0) изображаются точками числовой прямой.

Определение 5. Множеством вещественных чисел во множестве С называют подмножество R = {(x,0)} Ì C и пишут (x,0) = xR 1=(1,1); 0=(0,0).

В отличие от R во множестве С не определена операция сравнения!!!

§3. Алгебраическая форма к.Ч.; арифметические операции с к.Ч.

В С к. число с нулевой мнимой частью (1,0)=1. Обозначим к. число c нулевой вещественной частью j =(0,1) и назовем его «мнимой единицей».

Из аксиом следует, что j2= jj =(0,1)(0,1) = (-1,0) = -1; Þ j3 = j2j =

=(-1).(0,1) = -j; j4 = 1.

Þ Используя аксиомы к.ч. и обозначения 1=(1,0); j=(0,1),запишем «цепочку» равенств: "z ÎC :

Определение. Записьназывают «алгебраической формой к.ч».

Следствия.

(1)Для к. чисел в алгебраической форме операции сложения, вычитания, умножения и возведения в натуральную степень выполняются по правилам действий с двучленами (x + jy) с последующим приведением подобных слагаемых и учетом степеней числа j.

Примеры.

z1=(2,3) -(1,-2) = 2+3j -(1-2j) =1+5j = (1,5); Rez1=1; Imz1=5; |z1|=

z2=(2,3)(1,-2) = (2+3j)(1-2j) = 2 - 4j + 3j-6j2 = (2+6) - j = 8-j;z2*=8+j

z3=(a,-b)3 = (a - bj)3 = a3 - 3a2(bj) + 3a(b2j2) -b3j3 =(a3 - 3ab2) +j(b3 - 3a2b);Rez3= a3 - 3ab2; Jmz3= b3 - 3a2b; |z3|=.

(2)z=x+jyz*=x-jy; (z*)*=z; z+z*=2x=2Rez; z-z*=(2Jmz)j;

|z|=|z*|; z·z*= x2+y2=|z|2;

(3) Деление к. чисел в алгебраической форме сводится к операции умножения:

Например,