Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Задание Контр.работа ОТС.doc
Скачиваний:
4
Добавлен:
23.08.2019
Размер:
953.86 Кб
Скачать

2.3 Краткие сведения из теории идентификации линейного объекта

Рассмотрим теперь линейную функцию F и проанализируем специфику ее идентификации.

М одель статики линейного детерминированного объекта с n входами Xj (j = 1, n ) и m выходами Yi(i = 1, m ) имеет единственно возможную структуру и описывается системой линейных алгебраических уравнений :

 y1 = a11x1 + a12x2 + ... + a1nxn + b1;

 y2 = a21x1 + a22x2 + ... + a2nxn + b2;

 ............................................ (10)

 ym = am1x1 + am2x2 + ... + amnxn + bm

где идентифицируются mn коэффициентов aij(i = 1, m ; j = 1, n).

Систему уравнений (10) можно записать в компактном виде в векторной форме

Y =AX + B, (11)

г

T

де

X

T

= (X1, .... Xn ) ,

Y

T

= (Y1, .... Ym) , (12)

B = (b1, .... bm ) .

(13)

Здесь Т - знак транспонирования.

Идентификации в данном случае подлежат вектор В и матрица А.

М одель (10) можно рассматривать как совокупность моделей с многомерным входом Xi (i = 1,n ) и одномерным выходом Y (m=1).

Поэтому рассмотрим один выход объекта, то есть случай m=1 , n>1.

Модель такого объекта в векторной форме имеет вид:

Y = a0 + < A, X >,

г де < A, X > - скалярное произведение векторов A = (a1, a2, ... an ) и X = (X1, X2, ...Xn):

В скалярной форме модель объекта имеет вид:

(14)

М одель имеет n+1 неизвестных параметров ai (i = 0,n),которые подлежат оценке на основе измерений входов и выхода объекта. Эта информация обычно представляется в виде N соответствующих пар значений (Xj, Yj) , где j=1, N , Xj = (X1j, X2j, .. Xnj ) - j-е состояние входа объекта, а Yj - реакция объекта на этот вход.

О бычным подходом к решению этой задачи является приравнивание выходов объекта и модели в N заданных точках (Xj, Yj) , в результате чего получают следующую систему уравнений идентификации:

( j = 1,N ) (15)

Полученные N уравнений с n+1 неизвестными N  n+1 имеют однозначное решение, если матрица

(16)

невырождена, т.е. det A1  0

и, следовательно, ранг матрицы равен n+1. Это возможно в том случае, если найдется n+1 линейно независимая строка матрицы (16).

Поэтому из N строк следует выбрать n+1 линейно независимых строк ,где i{1, N}.

В этом случае из системы (15) будут выделены n+1 линейно независимых уравнений

(r = 1, n+1), (17)

с

*

овместное решение которых гарантирует определение точных оценок ai (i = 0,n) идентифицируемых параметров ai (i = 0,n) объекта , если, разумеется объект действительно линеен. Покажем это.

Подставим в систему уравнений (17) уравнение объекта

*

*

*

(r = 1,n+1),

г де ai (i = 1,n) - оценки параметров объекта.

В

*

ведем невязки

 i = ai - ai ( i = 0,n)

Тогда система уравнений (17) запишется в виде :

(r = 1, n+1 ), (18)

Для того чтобы решение системы (18) было нулевым, необходимо и достаточно, чтобы определитель этой системы не был равен нулю. Легко заметить, что матрица системы (18) такая же, что и матрица системы (17) , содержит n+1 линейно независимых строк матрицы (16) и её определитель не равен нулю.

В результате имеем:

 i = 0 ( i = 0,n )

и следовательно, решение системы (18) гарантирует точную идентификацию параметров объекта, т.е.

a

*

i = ai ( i = 0,n )

О днако возможно, что объект не строго линеен и существуют незначительные случайные возмущения. При этом может оказаться, что ранг матрицы (16) меньше n+1 и из системы (15) невозможно выделить n+1 линейно независимых уравнений (17) для определения коэффициентов ai ( i = 0,n ) объекта. В этом случае возможны следующие подходы к идентификации:

1 ) повторить измерения входов и выхода объекта в надежде, что первый эксперимент был неудачным, т.е. состояния входа Xj (j = 1,N) были недостаточно разнообразны. Если и на новом экспериментальном материале не выполнится указанное условие, то можно попытаться изменить структуру модели;

2 ) понизить число идентифицируемых параметров, т.е. исключить рассмотрение одного из входов, например, тот , который мало изменяется. Это означает, что число идентифицируемых параметров стало n ( а не n+1). Сказанное следует делать до тех пор, пока ранг матрицы (16) не совпадает с ее размерностью. При выполнении этого условия из системы (15) всегда можно выделить линейно независимые уравнения (17) в количестве равном числу n1 оставшихся коэффициентов ai ( i = 1, n1 ) . Совместно решая их находят эти коэффициенты;

3 ) отказаться от метода интерполяции для определения неизвестных коэффициентов ai ( i = 1, n ), который привел к несовместной системе линейных уравнений. Ввести суммарную невязку выходов модели и объекта.

(19)

В еличина E - характеризует степень несоответствия модели и объекта и зависит от параметров а модели.

Задачу оценки параметров ai ( i = 0, n ) можно теперь представить как задачу минимизации невязки (19), например, методом наименьших квадратов, т.е. свести к решению системы линейных уравнений:

 (20)

 (k = 1, n).

Система (20) имеет следующий развернутый вид:

(21)

......................................................

,

где суммирование всюду осуществляется по о от 1 до N.

К ак видно, эта система линейных алгебраических уравнений относительно искомых параметров ai ( i = 0, n ) . Если ранг матрицы коэффициентов системы (10)

(22)

р

*

*

*

авен n+1 , то det C0 и система (21) имеет единственное решение а0, а1,... аn , причем оно доставляет минимум функции E(а) (19), поскольку Е(а) 0.

В некоторых случаях матрица с системы линейных уравнений может оказаться плохообусловленной, т.е. det C0. В этом случае малые ошибки измерений Xi и вычислительные погрешности вычислительных процессов приводят к большим погрешностям определения коэффициентов модели аj (j = 0,n). Плохая обусловленность матрицы С имеет место в том случае, если некоторые ее строки (или столбцы) почти линейно зависимы. Например, пусть первая и вторая строки матрицы С почти линейно зависимы. Это означает, что

   

*

С уществует ряд способов определения аj из системы линейных уравнений (21), в которой det C0. Для этого прежде всего стремятся повысить точность вычислений, подвергают С некоторым эквивалентным преобразованиям, изменяют число опытов N и шаг Xi дискретности измерения входов Xi (i = 1, n).