Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
olololo.doc
Скачиваний:
3
Добавлен:
06.09.2019
Размер:
556.54 Кб
Скачать

Защита от внешних угроз

Внешние угрозы     

По данным Института защиты компьютеров (CSI) и ФБР cвыше 50% вторжений - дело рук собственных сотрудников компаний. Свыше 50% респондентов рассматривают конкурентов как вероятный источник "нападений". Наибольшее значение респонденты придают фактам подслушивания, проникновения в информационные системы и "нападениям", в которых "злоумышленники" фальсифицируют обратный адрес, чтобы перенацелить поиски на непричастных лиц. Такими злоумышленниками наиболее часто являются обиженные служащие и конкуренты.

К внешним источникам угроз относятся:

  1. Kомпьютерные вирусы и вредоносные программы;

  2. Организации и отдельные лица;

  3. Стихийные бедствия.(не будем рассматривать)

  По способам воздействия на объекты информационной безопасности угрозы подлежат следующей классификации: информационные, программные, физические, радиоэлектронные.

  К информационным угрозам относятся:

  • несанкционированный доступ к информационным ресурсам;

  • незаконное копирование данных в информационных системах;

  • хищение информации из библиотек, архивов, банков и баз данных;

  • нарушение технологии обработки информации;

  • противозаконный сбор и использование информации;

  К программным угрозам относятся:

  • использование ошибок и "дыр" в ПО;

  • компьютерные вирусы и вредоносные программы;

  • установка "закладных" устройств;

  К физическим угрозам относятся:

  • уничтожение или разрушение средств обработки информации и связи;

  • хищение носителей информации;

  • хищение программных или аппаратных ключей и средств криптографической защиты данных;

  • воздействие на персонал;

  К радиоэлектронным угрозам относятся:

  • внедрение электронных устройств перехвата информации в технические средства и помещения;

  • перехват, расшифровка, подмена и уничтожение информации в каналах связи.

Локальные сети

Понятие локальной сети

Начнем с общего определения: Компьютерная (вычислительная) сеть - это совокупность компьютеров и другого периферийного оборудования, соединенных с помощью каналов связи в единую систему так, что они могут связываться между собой и совместно использовать ресурсы сети.

На сегодняшний день можно классифицировать компьютерные сети по разным группам признаков, таких как скорость передачи данных, тип среды передачи, технология передачи данных, территориальная протяженность и так далее.

  • Глобальные (WAN) или региональные (MAN) вычислительные сети - объединяют абонентов, расположенных в различных странах, на разных континентах, городах, районах, зданиях. 

  • Локальные вычислительные сети (LAN) – включает абонентов, расположенных в пределах небольшой территории – квартиры, офиса, одного или нескольких зданий. Протяженность такой сети обычно ограничена пределами 2 – 2,5 километра.

Однако эти определения не совсем точны и корректны. Например, некоторые локальные сети легко обеспечивают связь на расстоянии нескольких десятков километров. Это уже размеры не комнаты, не здания, не близко расположенных зданий, а, может быть, даже целого города. С другой стороны, по глобальной сети вполне могут связываться компьютеры, находящиеся на соседних столах в одной комнате, но ее почему-то никто не называет локальной сетью

Как же нам отличить LAN?

  • Высокая скорость передачи информации, большая пропускная способность сети. Приемлемая скорость сейчас — не менее 10 Мбит/с.

Главное отличие локальной сети от любой другой — высокая скорость передачи информации по сети. Если еще десять лет назад вполне приемлемой считалась скорость обмена в 10 Мбит/с, то сейчас уже среднескоростной считается сеть, имеющая пропускную способность 100 Мбит/с, используются средства для скорости 1000 Мбит/с и даже больше. Без этого уже нельзя, иначе связь станет слишком узким местом, будет чрезмерно замедлять работу объединенного сетью виртуального компьютера, снижать удобство доступа к сетевым ресурсам.

  • Низкий уровень ошибок передачи (или, что тоже самое, высококачественные каналы связи). Допустимая вероятность ошибок передачи данных должна быть порядка 10-8 — 10-12.

В частности, принципиально необходим низкий уровень ошибок передачи, вызванных как внутренними, так и внешними факторами. Ведь даже очень быстро переданная информация, которая искажена ошибками, просто не имеет смысла, ее придется передавать еще раз. Поэтому локальные сети обязательно используют специально прокладываемые высококачественные и хорошо защищенные от помех линии связи.

  • Эффективный, быстродействующий механизм управления обменом по сети.

Особое значение имеет и такая характеристика сети, как возможность работы с большими нагрузками, то есть с высокой интенсивностью обмена (или, как еще говорят, с большим трафиком). Ведь если механизм управления обменом, используемый в сети, не слишком эффективен, то компьютеры могут подолгу ждать своей очереди на передачу. И даже если эта передача будет производиться затем на высочайшей скорости и безошибочно, для пользователя сети такая задержка доступа ко всем сетевым ресурсам неприемлема. Ему ведь не важно, почему приходится ждать.

  • Заранее четко ограниченное количество компьютеров, подключаемых к сети.

Механизм управления обменом может гарантированно успешно работать только в том случае, когда заранее известно, сколько компьютеров (или, как еще говорят,абонентов, узлов) допустимо подключить к сети. Иначе всегда можно включить столько абонентов, что вследствие перегрузки забуксует любой механизм управления. Наконец, сетью можно назвать только такую систему передачи данных, которая позволяет объединять до нескольких десятков компьютеров, но никак не два, как в случае связи через стандартные порты.

В теории сетей имеется несколько важных понятий, которые пригодятся нам в дальнейшем.

Абонент (узел, хост, станция) — это устройство, подключенное к сети и активно участвующее в информационном обмене. Чаще всего абонентом (узлом) сети является компьютер, но абонентом также может быть, например, сетевой принтер или другое периферийное устройство, имеющее возможность напрямую подключаться к сети.

Сервером называется абонент (узел) сети, который предоставляет свои ресурсы другим абонентам, но сам не использует их ресурсы. Таким образом, он обслуживает сеть. Серверов в сети может быть несколько, и совсем не обязательно, что сервер — самый мощный компьютер. Выделенный (dedicated) сервер — это сервер, занимающийся только сетевыми задачами. Невыделенный сервер может помимо обслуживания сети выполнять и другие задачи.

Клиентом называется абонент сети, который только использует сетевые ресурсы, но сам свои ресурсы в сеть не отдает, то есть сеть его обслуживает, а он ей только пользуется. Компьютер-клиент также часто называют рабочей станцией . В принципе каждый компьютер может быть одновременно как клиентом, так и сервером.

Технология передачи данных LAN:

  • Ethernet

  • Archnet

  • Talken Ring

  • FDDI

Топология локальных сетей

Под топологией (компоновкой, конфигурацией, структурой) компьютерной сети обычно понимается физическое расположение компьютеров сети друг относительно друга и способ соединения их линиями связи . Важно отметить, что понятие топологии относится, прежде всего, к локальным сетям, в которых структуру связей можно легко проследить. В глобальных сетях структура связей обычно скрыта от пользователей и не слишком важна, так как каждый сеанс связи может производиться по собственному пути.

Существует три базовые топологии сети:

  • Шина (bus) — все компьютеры параллельно подключаются к одной линии связи.

Рис. 1.5.  Сетевая топология шина

Топология шина подразумевает равноправие всех абонентов по доступу к сети. Компьютеры в шине могут передавать информацию только по очереди, так как линия связи в данном случае единственная. В шине всегда реализуется режим так называемого полудуплексного (half duplex) обмена (в обоих направлениях, но по очереди, а не одновременно).

Преимущества:

  • В топологии шина отсутствует явно выраженный центральный абонент, через которого передается вся информация, это увеличивает ее надежность (ведь при отказе центра перестает функционировать вся управляемая им система). Важное преимущество шины состоит в том, что при отказе любого из компьютеров сети, исправные машины смогут нормально продолжать обмен.

  • Добавление новых абонентов в шину довольно просто и обычно возможно даже во время работы сети.

  • В большинстве случаев при использовании шины требуется минимальное количество соединительного кабеля по сравнению с другими топологиями.

Недостатки:

  • Казалось бы, при обрыве кабеля получаются две вполне работоспособные шины. Однако надо учитывать, что из-за особенностей распространения электрических сигналов по длинным линиям связи необходимо предусматривать включение на концах шины специальных согласующих устройств, терминаторов, показанных в виде прямоугольников. Без включения терминаторов сигнал отражается от конца линии и искажается так, что связь по сети становится невозможной. В случае разрыва или повреждения кабеля нарушается согласование линии связи, и прекращается обмен даже между теми компьютерами, которые остались соединенными между собой.

  • Отказ сетевого оборудования любого абонента в шине может вывести из строя всю сеть. К тому же такой отказ довольно трудно локализовать, поскольку все абоненты включены параллельно, и понять, какой из них вышел из строя, невозможно.

  • При прохождении по линии связи сети с топологией шина информационные сигналы ослабляются и никак не восстанавливаются, что накладывает жесткие ограничения на суммарную длину линий связи.

  • Звезда (star) — к центральному устройству присоединяются периферийные компьютеры, причем каждый из них использует отдельную линию связи .

Рис. 1.6.  Сетевая топология звезда

Звезда — это единственная топология сети с явно выделенным центром, к которому подключаются все остальные абоненты. О равноправии всех абонентов (как в шине) в данном случае говорить не приходится. Никакие конфликты в сети с топологией звезда в принципе невозможны, так как управление полностью централизовано. В центре сети с данной топологией помещается специальное устройство — концентратор или, как его еще называют, хаб (hub), которое восстанавливает приходящие сигналы и пересылает их во все другие линии связи.

Преимущества:

  • Выход из строя периферийного компьютера или его сетевого оборудования никак не отражается на функционировании оставшейся части сети

  • Обрыв кабеля или короткое замыкание в нем нарушает обмен только с одним компьютером, а все остальные компьютеры могут нормально продолжать работу.

  • В отличие от шины, в звезде на каждой линии связи находятся только два абонента: центральный и один из периферийных. Чаще всего для их соединения используется две линии связи, каждая из которых передает информацию в одном направлении. Это так называемая передача точка-точка. Все это существенно упрощает сетевое оборудование по сравнению с шиной и избавляет от необходимости применения дополнительных, внешних терминаторов.

  • Предельная длина сети с топологией звезда может быть вдвое больше, чем в шине, так как каждый из кабелей, соединяющий центр с периферийным абонентом, может иметь длину Lпр.

  • Большое достоинство звезды состоит в том, что все точки подключения собраны в одном месте. Это позволяет легко контролировать работу сети, локализовать неисправности путем простого отключения от центра тех или иных абонентов (что невозможно, например, в случае шинной топологии ), а также ограничивать доступ посторонних лиц к жизненно важным для сети точкам подключения.

Недотатки:

  • Отказ центрального устройства делает сеть полностью неработоспособной.

  • Общим недостатком для всех топологий типа звезда (как активной, так и пассивной) является значительно больший, чем при других топологиях, расход кабеля. Это существенно влияет на стоимость сети в целом и заметно усложняет прокладку кабеля.

  • Кольцо (ring) — компьютеры последовательно объединены в кольцо. Передача информации в кольце всегда производится только в одном направлении. Каждый из компьютеров передает информацию только одному компьютеру, следующему в цепочке за ним, а получает информацию только от предыдущего в цепочке компьютера

Рис. 1.7.  Сетевая топология кольцо

Достоинства:

  • Важная особенность кольца состоит в том, что каждый компьютер ретранслирует (восстанавливает, усиливает) приходящий к нему сигнал, то есть выступает в роли репитера. Затухание сигнала во всем кольце не имеет никакого значения, важно только затухание между соседними компьютерами кольца.

  • На практике размеры кольцевых сетей достигают десятков километров. Кольцо в этом отношении существенно превосходит любые другие топологии.

  • Кольцевая топология обычно обладает высокой устойчивостью к перегрузкам, обеспечивает уверенную работу с большими потоками передаваемой по сети информации, так как в ней, как правило, нет конфликтов (в отличие от шины), а также отсутствует центральный абонент (в отличие от звезды), который может быть перегружен большими потоками информации.

Строго говоря, компьютеры в кольце не являются полностью равноправными (в отличие, например, от шинной топологии ). Ведь один из них обязательно получает информацию от компьютера, ведущего передачу в данный момент, раньше, а другие — позже. Именно на этой особенности топологии и строятся методы управления обменом по сети, специально рассчитанные на кольцо. В таких методах право на следующую передачу (или, как еще говорят, на захват сети) переходит последовательно к следующему по кругу компьютеру.

Недостатки:

  • Сигнал в кольце проходит последовательно через все компьютеры сети, поэтому выход из строя хотя бы одного из них (или же его сетевого оборудования) нарушает работу сети в целом. Это существенный недостаток кольца.

  • Точно так же обрыв или короткое замыкание в любом из кабелей кольца делает работу всей сети невозможной. Из трех рассмотренных топологий кольцо наиболее уязвимо к повреждениям кабеля, поэтому в случае топологии кольца обычно предусматривают прокладку двух (или более) параллельных линий связи, одна из которых находится в резерве.

Адресация

Каждый компьютер в сети TCP/IP имеет адреса трех уровней:

  • Локальный адрес узла, определяемый технологией, с помощью которой построена отдельная сеть, в которую входит данный узел. Для узлов, входящих в локальные сети - это МАС-адрес сетевого адаптера или порта маршрутизатора, например, 11-А0-17-3D-BC-01. Эти адреса назначаются производителями оборудования и являются уникальными адресами, так как управляются централизовано. Для всех существующих технологий локальных сетей МАС-адрес имеет формат 6 байтов: старшие 3 байта - идентификатор фирмы производителя, а младшие 3 байта назначаются уникальным образом самим производителем. Для узлов, входящих в глобальные сети, такие как Х.25 или frame relay, локальный адрес назначается администратором глобальной сети.

  • IP-адрес, состоящий из 4 байт, например, 109.26.17.100. Этот адрес используется на сетевом уровне. Он назначается администратором во время конфигурирования компьютеров и маршрутизаторов. IP-адрес состоит из двух частей: номера сети и номера узла. Номер сети может быть выбран администратором произвольно, либо назначен по рекомендации специального подразделения Internet (Network Information Center, NIC), если сеть должна работать как составная часть Internet. Обычно провайдеры услуг Internet получают диапазоны адресов у подразделений NIC, а затем распределяют их между своими абонентами.

Номер узла в протоколе IP назначается независимо от локального адреса узла. Деление IP-адреса на поле номера сети и номера узла - гибкое, и граница между этими полями может устанавливаться весьма произвольно. Узел может входить в несколько IP-сетей. В этом случае узел должен иметь несколько IP-адресов, по числу сетевых связей. Таким образом IP-адрес характеризует не отдельный компьютер или маршрутизатор, а одно сетевое соединение.

  • Символьный идентификатор-имя, например, SERV1.IBM.COM. Этот адрес назначается администратором и состоит из нескольких частей, например, имени машины, имени организации, имени домена. Такой адрес, называемый также DNS-именем, используется на прикладном уровне, например, в протоколах FTP или telnet.

Независимо от технических возможностей, адреса внутренней сети не следует выбирать случайным образом. Специально для этих целей существуют зарезервированные адреса. Эти адреса не присвоены и никогда не будут присвоены какому-либо хосту, непосредственно соединенному с Интернет.

• От 10.0.0.0 до 10.255.255.255

(одна сеть класса A, 16777216 хостов);

• От 172.16.0.0 до 172.31.255.255

(шестнадцать сетей класса B или 1048576 хостов);

• От 192.168.0.0 до 192.168.255.255

(256 сетей класса C или 65536 хостов).

Что угрожает локальной сети?

Удалённая сетевая атака — информационная атака на систему или сеть с целью НСД, модификации, удаления информации. Кроме того атака может производиться с целью нарушения функционирования системы.

Сетевые атаки можно классифицировать по уровнбю воздействия согласно эталонной семиуровневой модели ISO/OSI:

    • физический;

    • канальный;

    • сетевой;

    • транспортный;

    • сеансовый;

    • представительный;

    • прикладной.

  • Физический уровень — самый нижний уровень сетевой модели OSI, предназначен непосредственно для передачи потока данных. Осуществляет передачу электрических или оптических сигналов в кабель или в радиоэфир и, соответственно, их приём и преобразование в биты данных в соответствии с методами кодирования цифровых сигналов. Другими словами, осуществляет интерфейс между сетевым носителем и сетевым устройством.

  • Канальный уровень (англ. Data Link layer) — уровень сетевой модели OSI, который предназначен для обеспечения взаимодействия сетей на физическом уровне и контроля за ошибками, которые могут возникнуть. Полученные с физического уровня данные он упаковывает во фреймы, проверяет на целостность, если нужно исправляет ошибки (посылает повторный запрос поврежденного кадра) и отправляет на сетевой уровень. Канальный уровень может взаимодействовать с одним или несколькими физическими уровнями, контролируя и управляя этим взаимодействием.

  • Протокол сетевого уровня (англ. Network layer) — протокол 3-его уровня сетевой модели OSI, предназначается для определения пути передачи данных. Отвечает за трансляцию логических адресов и имён в физические, определение кратчайших маршрутов, коммутацию и маршрутизацию, отслеживание неполадок и заторов в сети. На этом уровне работает такое сетевое устройство, как маршрутизатор.

  • Транспортный уровень (англ. Transport layer) — 4-й уровень сетевой модели OSI предназначен для доставки данных без ошибок, потерь и дублирования в той последовательности, как они были переданы. При этом не важно, какие данные передаются, откуда и куда, то есть он предоставляет сам механизм передачи. Блоки данных он разделяет на фрагменты, размер которых зависит от протокола, короткие объединяет в один, а длинные разбивает. Протоколы этого уровня предназначены для взаимодействия типа точка-точка. Пример: TCP, UDP.

  • Сеансовый уровень (англ. Session layer) — 5-й уровень сетевой модели OSI отвечает за поддержание сеанса связи, позволяя приложениям взаимодействовать между собой длительное время. Уровень управляет созданием/завершением сеанса, обменом информацией, синхронизацией задач, определением права на передачу данных и поддержанием сеанса в периоды неактивности приложений. Синхронизация передачи обеспечивается помещением в поток данных контрольных точек, начиная с которых возобновляется процесс при нарушении взаимодействия.

  • Представительский уровень (Уровень представления, (англ. Presentation layer) — отвечает за преобразование протоколов и кодирование/декодирование данных. Запросы приложений, полученные с уровня приложений, он преобразует в формат для передачи по сети, а полученные из сети данные преобразует в формат, понятный приложениям. На этом уровне может осуществляться сжатие/распаковка или кодирование/декодирование данных, а также перенаправление запросов другому сетевому ресурсу, если они не могут быть обработаны локально.

  • Протокол прикладного уровня — протокол верхнего (7-ого) уровня сетевой модели OSI, обеспечивает взаимодействие сети и пользователя. Уровень разрешает приложениям пользователя иметь доступ к сетевым службам, таким как обработчик запросов к базам данных, доступ к файлам, пересылке электронной почты. Также отвечает за передачу служебной информации, предоставляет приложениям информацию об ошибках и формирует запросы к уровню представления. Пример: HTTP, POP3, SMTP.

Примеры атак:

IP-спуфинг (от англ. spoof — мистификация) — вид хакерской атаки, заключающийся в использовании чужого IP-адреса с целью обмана системы безопасности.

DoS-атака (атака типа «отказ в обслуживании», от англ. Denial of Service) — атака на вычислительную систему с целью довести её до отказа, то есть создание таких условий, при которых легитимные (правомерные) пользователи системы не могут получить доступ к предоставляемым системой ресурсам (серверам), либо этот доступ затруднён. Если атака выполняется одновременно с большого числа компьютеров, говорят о DDoS-атаке

Инъекция - Атака, связанная с различного рода инъекциями, подразумевает внедрение сторонних команд или данных в работающую систему с целью изменения хода работы системы, а в результате — получение доступа к закрытым функциям и информации, либо дестабилизации работы системы в целом. Наиболее популярна такая атака в сети Интернет, но также может быть проведена через командную строку системы.

Сниффинг (прослушивание) довольно распространённый вид атаки, основанный на работе сетевой карты в режиме promiscuous mode, а также monitor mode для сетей Wi-Fi. В таком режиме все пакеты, полученные сетевой картой, пересылаются на обработку специальному приложению, называемым сниффером, для обработки.

Maibombing Считается самым старым методом атак, хотя суть его проста и примитивна: большое количество почтовых сообщений делают невозможными работу с почтовыми ящиками, а иногда и с целыми почтовыми серверами. Для этой цели было разработано множество программ, и даже неопытный пользователь мог совершить атаку, указав всего лишь e-mail жертвы, текст сообщения, и количество необходимых сообщений.

Как защититься?

Межсетевой экран

Межсетевой экран или сетевой экран — комплекс аппаратных или программных средств, осуществляющий контроль и фильтрацию проходящих через него сетевых пакетов в соответствии с заданными правилами.

Основной задачей сетевого экрана является защита компьютерных сетей или отдельных узлов от несанкционированного доступа. Также сетевые экраны часто называют фильтрами, так как их основная задача — не пропускать (фильтровать) пакеты, не подходящие под критерии, определённые в конфигурации.

Некоторые сетевые экраны также позволяют осуществлять трансляцию адресов — динамическую замену внутрисетевых (серых) адресов или портов на внешние, используемые за пределами ЛВС.

Разновидности сетевых экранов

Сетевые экраны подразделяются на различные типы в зависимости от следующих характеристик:

  • обеспечивает ли экран соединение между одним узлом и сетью или между двумя или более различными сетями;

  • на уровне каких сетевых протоколов происходит контроль потока данных;

  • отслеживаются ли состояния активных соединений или нет.

В зависимости от охвата контролируемых потоков данных сетевые экраны делятся на:

  • традиционный сетевой (или межсетевойэкран — программа (или неотъемлемая часть операционной системы) на шлюзе (сервере, передающем трафик между сетями) или аппаратное решение, контролирующие входящие и исходящие потоки данных между подключенными сетями.

  • персональный сетевой экран — программа, установленная на пользовательском компьютере и предназначенная для защиты от несанкционированного доступа только этого компьютера.

Вырожденный случай — использование традиционного сетевого экрана сервером, для ограничения доступа к собственным ресурсам.

В зависимости от уровня, на котором происходит контроль доступа, существует разделение на сетевые экраны, работающие на:

  • сетевом уровне, когда фильтрация происходит на основе адресов отправителя и получателя пакетов, номеров портов транспортного уровня модели OSI и статических правил, заданных администратором;

  • сеансовом уровне (также известные как stateful) — отслеживающие сеансы между приложениями, не пропускающие пакеты нарушающих спецификации TCP/IP, часто используемых в злонамеренных операциях — сканировании ресурсов, взломах через неправильные реализации TCP/IP, обрыв/замедление соединений, инъекция данных.

  • уровне приложений, фильтрация на основании анализа данных приложения, передаваемых внутри пакета. Такие типы экранов позволяют блокировать передачу нежелательной и потенциально опасной информации на основании политик и настроек.

Некоторые решения, относимые к сетевым экранам уровня приложения, представляют собой прокси-серверы с некоторыми возможностями сетевого экрана, реализуя прозрачные прокси-серверы, со специализацией по протоколам. Возможности прокси-сервера и многопротокольная специализация делают фильтрацию значительно более гибкой, чем на классических сетевых экранах, но такие приложения имеют все недостатки прокси-серверов (например, анонимизация трафика).

В зависимости от отслеживания активных соединений сетевые экраны бывают:

  • stateless (простая фильтрация), которые не отслеживают текущие соединения (например, TCP), а фильтруют поток данных исключительно на основе статических правил;

  • stateful, stateful packet inspection (SPI) (фильтрация с учётом контекста), с отслеживанием текущих соединений и пропуском только таких пакетов, которые удовлетворяют логике и алгоритмам работы соответствующихпротоколов и приложений. Такие типы сетевых экранов позволяют эффективнее бороться с различными видами DoS-атак и уязвимостями некоторых сетевых протоколов. Кроме того, они обеспечивают функционирование таких протоколов, как H.323SIPFTP и т. п., которые используют сложные схемы передачи данных между адресатами, плохо поддающиеся описанию статическими правилами, и, зачастую, несовместимых со стандартными,stateless сетевыми экранами.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]