Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Електроніка.doc
Скачиваний:
12
Добавлен:
13.09.2019
Размер:
449.02 Кб
Скачать

Питання 1. Напівпровідники, кристалічна структура, носії заряду.

Власні напівпровідники зазвичай мають невелику концентрацію вільних носіїв заряду, електронів та дірок, яка залежить від ширини забороненої зони та температури. При збільшенні температури концентрація вільних електронів та дірок дуже швидко зростає. Ефект цього зростання набагато перевищує ефект від збільшення частоти актів розсіяння, тож провідність власних напівпровідників різко збільшується при високих температурах.

Іншим фактором, який збільшує провідність власних напівпровідників, є створення підвищеної концентрації вільних носіїв заряду світловим опроміненням або інжекцією. При поглинанні кванта світла із енергією більшою за ширину забороненої зони в напівпровіднику утворюється пара носіїв заряду - електрон переходить із валентної зони у зону провідності, залишаючи за собою дірку. Якщо до освітленого напівпровідника прикласти напругу, то в напівпровіднику потече доволі значний струм. Така провідність називається фотопровідністю і широко використовується у різноманітних фотоелементах. Аналогічну провідність можна створити при опроміненні швидкими частками, що служить основою роботи напівпровідникових детекторів радіації.

На інжекція зарядів у напівпровідник через контакт ґрунтується робота різноманітних напівпровідникових приладів, наприклад, біполярних транзисторів. Прикладене до контакту електричне поле допомагає частині носіїв заряду подолати потенціальний бар'єр, що відділяє напівпровідник від контакту. Далі провідність відбувається за принципами близькими до принципів роботи вакуумних ламп: створюється область просторового заряду, яка обмежує струм, а отже провідність.

У легованих напівпровідниках навіть при кімнатних температурах концентрація електронів у зоні провідності (напівпровідники n-типу) чи дірок у валентній зоні (напівпровідники p-типу) висока, оскільки для переходу між зоною й домішковим рівнем електрону потрібно набрати набагато меншу енергію (глибина домішкових рівнів зазвичай не перевищує 0.5 еВ). Тому провідність легованих напівпровідників доволі висока й наближається до провідності металів. Вона теж росте із температурою, оскільки для неї фактор збільшення концентрації носіїв у зоні важливіший за збільшення частоти актів розсіяння.

Контакти між областями n-типу й p-типу, які називають p-n переходами мають особливу односторонню провідність. На цьому факті базується робота різноманітних напівпровідникових пристроїв - діодів, транзисторів, фотодіодів, напівпровідникових сонячних елементів, активного шару копіювальних машин, лазерних принтерів тощо.

Напівпровідни́к — матеріал, електропровідність якого має проміжне значення між провідностями провідника та діелектрика і відрізняються від провідників сильною залежністю питомої провідності від концентрації домішок, температури і різних видів випромінювання. Основною властивістю цих матеріалів є збільшення електричної провідності з ростом температури .

Напівпровідниками є речовини, ширина забороненої зони яких складає порядку декількох електронвольт (еВ). Наприклад, алмаз можна віднести до широкозонних напівпровідників, а арсенід індію — до вузькозонних. До числа напівпровідників належать багато простих речовин хімічних елементів (германій, кремній, селен, телур, арсен та інші), величезна кількість сплавів і хімічних сполук (арсенід галію та ін.).

Залежно від того, чи віддає домішковий атом електрон або захоплює його, його називають донорними або акцепторними. Характер домішки може змінюватися в залежності від того, який атом решітки вона заміщує, в яку кристалографічну площину вбудовується.

Провідність напівпровідників сильно залежить від температури. Поблизу абсолютного нуля температури напівпровідники мають властивості діелектриків.

Фізичні властивості

Характерна риса напівпровідників — зростання електропровідності зі зростанням температури; при низьких температурах електропровідність мала. При температурі близькій до абсолютного нуля напівпровідники мають властивості ізоляторів. Кремній, наприклад, при низькій температурі погано проводить електричний струм, але під впливом світла, тепла чи напруги електропровідність зростає.

Зонна структура

Зонна структура напівпровідника

Напівпровідники мають повністю заповнену валентну зону, відділену від зони провідності неширокою забороненою зоною. Ширина забороненої зони напівпровідників зазвичай менша за 3 еВ. Неширока заборонена зона призводить до того, що при підвищенні температури ймовірність збудження електрона у зону провідності зростає за експоненційним законом. Саме цим фактом зумовлене збільшення електропровідності власних напівпровідників.

Ще більше на електропровідність напівпровідників впливають домішки — донори й акцептори. Завдяки доволі великій діелектричній проникності домішкові рівні в забороненій зоні розташовані дуже близько до зони провідності чи до валентної зони (< 0.5 еВ), й легко іонізуються, віддаючи електрони в зону провідності чи забираючи їх із валентної зони. Леговані напівпровідники мають значну електропровідність.

Невелика ширина забороненої зони також сприяє фотопровідності напівпровідників.

В залежності від концентрації домішок напівпровідники діляться на власні (без домішок), n-типу (донори), p-типу (акцептори) і компенсовані (концентрація донорів урівноважує концентрацію акцепторів, й напівпровідник веде себе, як власний). При дуже високій концентрації домішок напівпровідник стає виродженим і веде себе, як метал.

У напівпровідникових приладах використовуються унікальні властивості контакту областей напівпровідника, одна з яких належить до n-типу, інша до p-типу — так званих p-n переходів. p-п переходи проводять струм лише в одному напрямку. Схожі властивості мають також контакти між напівпровідниками й металами — контакти Шоткі.

Оптичні властивості напівпровідників Поглинання світла

Поглинання світла напівпровідниками зумовлене переходами між енергетичними станами зонної структури. З огляду на принцип виключення Паулі електрони можуть переходити тільки із заповненого енергетичного стану в незаповнений. У власному напівпровіднику усі стани валентної зони заповнені, а всі стани зони провідності незаповнені, тому переходи можливі лише з валентної зони в зону провідності. Для здійснення такого переходу електрон повинен отримати від світла енергію, не меншу за ширину забороненої зони. Фотони з меншою енергією не викликають переходів між електронними станами напівпровідника, тому напівпровідники прозорі в області частот , де  — ширина забороненої зони,  — зведена стала Планка. Ця частота визначає фундаментальний край поглинання для напівпровідника. Для напівпровідників, які найчастіше застосовуються в електроніці (кремнію, германію, арсеніду галію) вона лежить в інфрачервоній області спектру.

Додаткові обмеження на поглинання світла напівпровідниками накладають правила відбору, зокрема закон збереження імпульсу. Закон збереження імпульсу вимагає, щоб квазі-імпульс кінцевого стану відрізнявся від квазі-імпульсу початкового стану на величину імпульсу поглинутого фотона. Хвильове число фотона , де  — довжина хвилі, дуже мале в порівнянні з вектором оберненої ґратки напівпровідника, або, що те ж саме, довжина хвилі фотона у видимій області набагато більша за характерну міжатомну віддаль у напівпровіднику, що призводить до вимоги того, щоб квазі-імпульс кінцевого стану при електронному переході практично дорівнював квазі-імпульсу початкового стану. При частотах близьких до фундаментального краю поглинання це можливо лише для прямозонних напівпровідників. Оптичні переходи в напівпровідниках, при яких імпульс електрона майже не змінюється називаються прямими або вертикальними. Імпульс кінцевого стану може значно відрізнятися від імпульсу початкового стану, якщо в процесі поглинання фотона бере участь ще інша, третя частинка, наприклад, фонон. Такі переходи теж можливі, хоча й менш імовірні. Вони називаються непрямими переходами.

Таким чином, прямозонні напівпровідники, наприклад, арсенід галію починають сильно поглинати світло, коли енергія його кванта перевищує ширину забороненої зони. Такі напівпровідники дуже зручні для використання в оптоелектроніці.

Непрямозонні напівпровідники, наприклад, кремній, поглинають в області частот світла з енергією кванта ледь більшою за ширину забороненої зони значно слабше, лише завдяки непрямим переходам, інтенсивність яких залежить від присутності фононів, а, отже, від температури. Гранична частота прямих переходів для кремнію більша за 3 еВ, тобто лежить в ультрафіолетовій області спектру.

При переході електрона з валентної зони в зону провідності в напівпровіднику виникають вільні носії заряду, а отже фотопровідність.

При частотах, нижчих за край фундаментального поглинання, можливе поглинання світла, зв'язане зі збудженням екситонів, присутністю домішок і поглинанням фононів. Екситонні зони розташовані в напівпровіднику дещо нижче від дна зони провідності завдяки енергії зв'язку екситона. Екситонні спектри поглинання мають воднеподібну структуру. Аналогічним чином домішки, акцептори чи донори, створюють акцепторні чи донорні рівні, що лежать у забороненій зоні. Вони значно модифікують спектр поглинання легованого напівпровідника. Якщо при непрямому переході одночасно з квантом світла поглинається фонон, то енергія поглинутого світлового кванта може бути меншою на величину енергії фонона, що приводить до поглинання на частотах дещо менших від фундаментального краю.