Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Шпоры по ТВ(готовые).doc
Скачиваний:
5
Добавлен:
17.09.2019
Размер:
877.06 Кб
Скачать

Функция распределения случайной величины.

Для непрерывных случайных величин применяют такую форму закона распределения, как функция распределения.

Функция распределения случайной величины Х, называется функцией аргумента х, что случайная величина Х принимает любое значение меньшее х (Х<х)

F(х)=Р(Х<х)

F(х) - иногда называют интегральной функцией распределения или интегральным законом распределения.

Функция распределения обладает следующими свойствами:

  1. 0<F(х)<1

  2. если х12,то F(х1)>F(х2)

функция может быть изображена в виде графика. Для непрерывной величины это будет кривая изменяющееся в пределах от 0 до 1, а для дискретной величины - ступенчатая фигура со скачками.

С помощью функции распределения легко находится вероятность попадания величины на участок от α до β

Р(α<х<β) рассмотрим 3 события

А - α<Х

В - α<Х<β

С - Х<β

С=А+В

Р(С)=Р(А)+Р(В)

Р(α<х<β)=Р(α)-Р(β)

Плотность распределения вероятности непрерывной случайной величины.

Плотность распределения вероятности непрерывной случайной величины Х называется функция f(х) равная первой производной от функции распределения F(х)

График плотности распределения называется кривой распределения.

Основные свойства плотности функции распределения:

  1. f(х)>0

Характеристики положения случайной величины.

Модой (Мо) случайной величины х называется наиболее вероятное ее значение. Это определение строго относится к дискретным случайным величинам.

Для непрерывной величины модой называется такое ее значение для которого ф-ция плотности распределения имеет максимальную величину.

Медианой (Ме) случайной величины называется такое ее значение для которого окажется ли случайная величина меньше этого значения.

Для непрерывной случайной величины медиана это абсцисса точки в которой площадь под кривой распределяется пополам.

Для дискретной случайной величины значение медианы зависит от того четное или нечетное значение случайной величины

n=2k+1, то Ме=хк+1 (среднее по порядку значение)

Если значение случайных величин четное, т.е n=2k, то

Математическое ожидание случайной величины.

Математическим ожиданием E(x) для случайной величины x, которая может принимать значения x и только такие значения с вероятностями Р(x )=Р , называют число, которое определяется равенством

i=k i=k

E(x)=∑xi·Рi, ∑ Рi=1, Рi≥0, i=1,…,k (10.1)

i=1 i=1

Например, в случае с игральной костью математическое ожидание количества очков x, которое выпадет, будет согласно (10.1) числом

E(x)=(1/6)∙(1+2+3+4+5+6)=(1/6)∙21=7/2= (10.2)

Смысл понятия математического ожидания раскрывается в законе больших чисел. Этот закон проявляется следующим образом. Если сделать подряд очень большое число n независимых испытаний при одинаковых условиях, и таких, что каждый раз осуществляется одно из значений рассматриваемой случайной величины х, то с вероятностью очень близкой к единице, то есть практически наверняка и с большой степенью точности будет выполняться приближенное равенство

(x(1)+x(2)+…+x(n))/n ≈ E(x) (10.3)

Здесь x(i)–значение случайной величины x, которое появляется в i-том испытании. Закон больших чисел обоснован теоретически при определенных аксиомах теории вероятностей и многократно подтвержден на практике.

Пусть некоторая случайная величина х* является суммой случайных величин

(10.4)

тогда математическое ожидание E(x*) равно сумме математических ожиданий Е(х )

(10.5)