Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
физиология 2.docx
Скачиваний:
7
Добавлен:
19.09.2019
Размер:
185.63 Кб
Скачать

Деление прокариотических клеток

Прокариоти́ческие клетки делятся надвое. Сначала клетка удлиняется, в ней образуется попе­речная перегородка. На завершающем этапе дочерние клетки расходятся. Отличительной чертой деления прокариотических клеток является непосредственное участие реплицированной ДНК в процессе деления[6]. Обычно прокариотические клетки делятся с образованием двух одинаковых по размеру дочерних клеток, поэтому этот процесс ещё иногда называют бинарным делением. В связи с тем, что в подавляющем большинстве случаев прокариотические клетки имеют клеточную стенку, бинарное деление сопровождается образованием септы — перегородки между дочерними клетками, которая затем расслаивается посередине. Процесс деления прокариотической клетки подробно изучен на примере Escherichia coli[7].

Химический состав клетки

1 группа (до 98 %) (органогены)

  • Углерод

  • Водород

  • Кислород

  • Азот

  • Фосфор

2 группа (1,5—2 %) (макроэлементы)

  • Калий

  • Натрий

  • Кальций

  • Магний

  • Хлор

  • Железо

3 группа (>0,01 %) (микроэлементы)

  • Цинк

  • Марганец

  • Медь

  • Фтор

  • Йод

  • Кобальт

  • Молибден

4 группа (>0,00001 %) (ультрамикроэлементы)

  • Уран

  • Радий

  • Золото

65. Всасывание

 

Всасывание — процесс транспорта компонентов пищи из полости пищеварительного тракта во внутреннюю среду, кровь и лимфу организма. Всосавшиеся вещества разносятся по организму и включаются в обмен веществ тканей. В полости рта химическая обработка пищи сводится к частичному гидролизу углеводов  амилазой слюны, при котором крахмал расщепляется на дек­стрины, мальтоолигосахариды и мальтозу. Кроме того, время пре­бывания пищи в полости рта незначительно, поэтому всасывания здесь практически не происходит. Однако известно, что некоторые фармакологические вещества всасываются быстро, и это находит применение как способ введения лекарственных веществ.

 

В желудке всасывается небольшое количество аминокислот,  глюкозы, несколько больше воды и растворенных в ней минеральных солей, значительно всасывание растворов алкоголя. Всасывание питательных веществ, воды, электролитов осу­ществляется в основном в тонкой кишке и сопряжено с гидроли­зом питательных веществ. Всасывание зависит от величины по­верхности, на которой оно осуществляется. Особенно велика по­верхность всасывания в тонкой кишке. У человека поверхность слизистой оболочки тонкой кишки увеличена в 300—500 раз за счет складок, ворсинок и микроворсинок. На 1 мм* слизистой обо­лочки кишки приходится 30—40 ворсинок, а каждый энтероцит имеет 1700—4000 микроворсинок.  На 1 мм поверхности кишечного эпителия приходится 50-100 млн микроворсинок.

 

У взрослого человека число всасывающих кишечных клеток составляет 10'°, а соматических клеток — 10'°. Из этого следует, что одна кишечная клетка обеспечивает питательными веществами около 100 000 других клеток организма человека. Это предполагает высокую активность энтероцитов в гидролизе и всасывании пита­тельных веществ. Микроворсинки покрыты слоем гликокаликса,образующего из мукополисахаридных нитей на апикальной поверхности слой толщиной до 0,1 мкм. Нити связаны между собой кальциевыми мостиками,что обуславливает формирование особой сети. Она обладает свойствами молекулярного сита, разделющего молекулы по их величине и заряду. Сеть имеет отрицательный  заряд и гидрофильна, что придает направленный и селективный характер транспорту через нее низкомолекулярных веществ к мембране микроворсинок, препятствует транспорту через нее высокомолекулярных веществ и ксенобиотиков. Гликокаликс удерживает на поверхности эпителия кишечную слизь, которая вместе с гликокаликсом адсорбирует из полости кишки гидролитические ферменты, продолжающие полостной гидролиз питательных веществ, продукты которого переводятся на мембранные системы микроворсинок. На них завершается гидролиз питательных веществ по типу мембранного пищеварения с помощью кишечных ферментов с образованием в основном мономеров, которые всасываются.

 

Всасывание различных веществ осуществляется разными механизмами.

 

Всасывание макромолекул и их агрегатов происходит путем фагоцитоза и пиноцитоза. Эти механизмы относятся к эндоцитозу. С эндоцитозом связано внутриклеточное пищеварение, однако ряд веществ, попав в клетку путем эндоцитоза, транспортируется в везикуле через клетку и выделяется из нее путем экзоцитоза в межклеточное пространство. Такой транспорт веществ назван трансцитозом. Он, видимо, из-за небольшого объема не имеет существенного значения во всасывании питательных веществ, но важен в переносе иммуноглобулинов, витаминов, ферментов и т. д. из кишечника в кровь. У новорожденных трансцитоз важен в транспорте белков грудного молока.

 

Некоторое количество веществ может транспортироваться по межклеточным пространствам. Такой транспорт называется персорбцией.  С помощью персорбции переносятся часть воды и электролитов, а также другие вещества, в том числе белки (антитела, аллергены, ферменты и т. п.) и даже бактерии.

 

В процессе всасывания микромолекул — основных продуктов гидролиза питательных веществ в пищеварительном тракте, а также электролитов участвует три вида транспортных механизмов: пассивный транспорт, облегченная диффузия и активный транспорт. Пассивный транспорт включает в себя диффузию, осмос и фильтрацию. Облегченная диффузия осуществляется с помощью особых мембранных переносчиков и не требует затраты энергии. Активный транспорт — перенос веществ через мембраны против электрохимического или концентрационного градиента с затратой энергии и при участии специальных транспортных систем (мембранные транспортные каналы, мобильные переносчики, конформационные переносчики). Мембраны имеют транспортеры многих типов. Эти молекулярные устройства переносят один или несколько типов веществ. Часто транспорт одного вещества сопряжен с движением другого вещества, перемещение которого по градиенту концентрации служит источником энергии для сопрягаемого транспорта. Чаще всего в такой роли используется электрохимический градиент Na+. Натрийзависимым процессом в тонкой кишке является всасывание глюкозы, галактозы, свободных аминокислот, дипептидов и трипептидов, солей желчных кислот, били­рубина и ряда других веществ. Натрийзависимый транспорт осу­ществляется и через специальные каналы, и посредством мобиль­ных переносчиков. Натрийзависимые транспортеры расположены на апикальных мембранах, а натриевые насосы — на базолатеральных мембранах энтероцитов. В тонкой кишке существует и натрий-независимый транспорт многих мономеров пищевых веществ. Транспортные механизмы клеток связаны с деятельностью ионных насосов, которые используют энергию АТФ с помощью Na+, К+-АТФазы. Она обеспечивает градиент концентраций натрия и калия между вне- и внутриклеточной жидкостями и, следователь­но, участвует в обеспечении энергией натрийзависимого транспор­та (и мембранных потенциалов). Na+, К+-АТФаза локализована в базолатеральной мембране. Последующее откачивание ионов Na+ из клеток через базолатеральную мембрану (что создает гра­диент концентрации натрия на апикальной мембране) связано с затратой энергии и участием Na+, К+-АТФаз этих мембран. Тран­спорт мономеров (аминокислот и глюкозы), образовавшихся в результате мембранного гидролиза димеров на апикальной мем­бране кишечных эпителиоцитов, не требует участия ионов Na+ и обеспечивается энергией ферментно-транспортного комплекса. Мономер передается с фермента этого комплекса в транспортную систему без предварительного перевода в премембранную вод­ную фазу.

 

Скорость всасывания зависит от свойств кишечного содержи­мого. Так, при прочих равных условиях всасывание идет быстрее при нейтральной реакции этого содержимого, чем при кислой и щелочной; из изотонической среды всасывание электролитов и пи­тательных веществ происходит быстрее, чем из гипо- и гипертони­ческой среды. Активное создание в пристеночной зоне тонкой кишки с помощью двустороннего транспорта веществ слоя с отно­сительно постоянными физико-химическими свойствами является оптимальным для сопряженного гидролиза и всасывания питатель­ных веществ.

 

Повышение внутрикишечного давления увеличивает скорость всасывания из тонкой кишки раствора поваренной соли. Это ука­зывает на значение фильтрации во всасывании и роль кишечной моторики в этом процессе. Моторика тонкой кишки обеспечивает перемешивание пристеночного слоя химуса, что важно для гидро­лиза и всасывания его продуктов. Доказано преимущественное всасывание разных веществ в различных отделах тонкой кишки. Допускается возможность специализации разных групп энтеро­цитов на преимущественной резорбции тех или иных пищевых веществ.

 

Большое значение для всасывания имеют движения ворсинок слизистой оболочки тонкой кишки и микроворсинок энтероцитов. Сокращениями ворсинок лимфа с всосавшимися в нее веществами выдавливается из сжимающейся полости лимфатических .сосудов. Наличие в них клапанов препятствует возврату лимфы в сосуд при последующем расслаблении ворсинки и создает присасываю­щее действие центрального лимфатического сосуда. Сокращения микроворсинок усиливают эндоцитоз и, возможно, являются одним из его механизмов.

 

Натощак ворсинки сокращаются редко и слабо, при наличии в кишке химуса сокращения ворсинок усилены и учащены (до 6 в 1 мин у собаки). Механические раздражения основания ворси­нок вызывают усиление их сокращений, тот же эффект наблюдает­ся под влиянием химических компонентов пищи, особенно продук­тов ее гидролиза (пептиды, некоторые аминокислоты, глюкоза и экстрактивные вещества пищи). В реализации этих воздействий определенная роль отводится интрамуральной нервной системе (подслизистое, или мейснеровское, сплетение).

 

Кровь сытых животных, перелитая голодным, вызывает у них усиление движения ворсинок. Считают, что при действии кислого желудочного содержимого на тонкую кишку в ней образуется гор­мон вилликинин, который через кровоток стимулирует движения ворсинок. В очищенном виде вилликинин не выделен. Скорость всасывания из тонкой кишки в большой мере зависит от уровня ее кровоснабжения. В свою очередь оно увеличивается при наличии в тонкой кишке продуктов, подлежащих всасыванию.

 

Всасывание питательных веществ в толстой кишке незначи­тельно, так как при нормальном пищеварении большая часть их уже всосалась в тонкой кишке. В толстой кишке всасывается боль­шое количество воды, в небольшом количестве могут всасываться глюкоза, аминокислоты и некоторые другие вещества. На этом основано применение так называемых питательных клизм, т. е. введение легкоусвояемых питательных веществ в прямую кишку.

66.  Кора головного мозга (большого мозга), или плащ, cortex cerebri (pallium), - это слой серого вещества полушарий большого мозга, расположенный по его периферии. Морфология коры больших полушарий головного мозга -раздел морфологии нервной системы, предметом исследования которого является макроскопическое и микроскопическое строение коры больших полушарий головного мозга.       Площадь поверхности одного полушария у взрослого человека, как и любая переменная, описывающая живые сущности иявления,вероятностная переменная величина. Она значительно варьирует по своим значениям. Её средняя величинаcоставляет ~2,2·104 мм2. При этом на выпуклые (видимые) части извилин приходится одна третья часть всей площади, а на боковые и нижние стенки борозд - две трети.       Наиболее крупные отделы коры головного мозга:         –  древняя кора (палеокортекс),         –  старая кора (архикортекс),         –  новая кора (неокортекс) и         –  межуточная кора.      Основную центральную часть поверхности полушарий составляет новая кора (~95,6% площади поверхности). Старая кора (~2,2% площади поверхности), древняя кора (~0,6% площади поверхности) и межуточная кора (~1,6% площади поверхности ) занимают периферию поверхности коры, т. е. расположены по краям плаща большого мозга.       На срезах полушарий большого мозга в некоторых областях (затылочная доля) даже невооруженным глазом видна слоистость коры, характерная для коры в целом. Это чередующиеся серые и белые полосы, ориентированные вдоль поверхности коры. При исследовании с помощью микроскопа видно, что серые полосы составлены по-преимуществу наиболееоднородными по своим морфологическим характеристикам нервными клетками, а белые - наиболее однородными нервными волокнами.       Древняя кора у человека и высших млекопитающих состоит из одного слоя клеток, нечетко отделённого от нижележащихподкорковых ядер. Старая кора полностью отделена от подкорковых ядер и представлена чаще всего 2  ÷ 3 слоями клеток. Новая кора может состоять из 6  ÷ 7 слоев клеток. Межуточные формации - переходные структуры между полями старой и новой коры, а также между древней и новой корой могут состоять из 4  ÷ 5 слоев клеток.       Толщина коры, как и любая переменная, описывающая живые сущности и явления,вероятностная переменная. Она варьирует по своим значениям, в различных участках мозга у одного человека и у разных людей толщина коры может изменяться в пределах ~1,5  ÷ 5,0 мм. Наибольшая толщина наблюдается в верхних участках предцентральной, постцентральной извилин и парацентральной дольки. Обычно толщина коры больше на выпуклой поверхности извилин, чем на боковых поверхностях и на дне борозд.        Российский анатом и гистолог В. А. Бец (Бец Владимир Алексеевич, 1834-1894) доказал, что не только вид нервных клеток, но и их взаимное расположение варьирует в различных участках коры. Распределение различных нервных клеток в коре обозначается термином «цитоархитектоника». Наиболее однородные по своим морфологическим характеристикам нервные клетки располагаются в виде отдельных слоев. Слоистость коры, чередующиеся серые и белые полосы, видна на срезах полушарий в некоторых областях (затылочная доля) даже невооруженным глазом.       Микроскопические исследования показывают, что в каждом клеточном слое, содержатся как тела нервных и глиальных клеток, так и нервные волокна. Эти нервные волокна, составляющие проводящие пути, могут быть отростками нейронов данного слоя коры, нейронов других её клеточных слоев или нейронов других структур мозга. Строение и плотность распределенияволокон в различных отделах коры неодинаковы. Распределение нервных волокон в коре головного мозга определяют термином «миелоархитектоника». Миелоархитектоника коры соответствует её цитоархитектонике.

     Наиболее вероятным, то есть наиболее типичным для новой коры большого мозга взрослого человека, является расположение нервных клеток в виде шести слоев (пластинок). Каждый из шести слоев (пластинок) коры имеет свое название:       (1) молекулярная пластинка, lamina molecularis (plexiformis);       (2) наружная зернистая пластинка, lamina granularis externa;       (3) наружная пирамидная пластинка (слой малых, средних пирамид), lamina pyramidalis externa;       (4) внутренняя зернистая пластинка, lamina granularis interna;       (5) внутренняя пирамидная пластинка (слой больших пирамид, или клеток Беца), lamina pyramidalis interna;       (6) мультиформная (полиформная) пластинка, lamina multiformis.       См. подробное описание слоев и клеток коры полушарий головного мозга.       На медиальной и нижней поверхностях полушарий большого мозга расположены участки старой, archicortex, и древней, paleocortex, коры. Эти участки, в отличие от неокортекса, могут иметь от одного до пяти слоев.  В конце XIX и начале XX столетия ученые разных стран на основе гистологических исследований пытались создать цитомиелоархитектонические карты структуры коры большого мозга. Карты создавались на основе деления коры на области и поля с однородными характерными особенности структуры нейронов исвязей нейронов коры друг с другом и с другими нервными клетками. Исходной предпосылкойкартографии было положение, что разным по структуреполям соответствуют разные функции. Отсюда предполагалось, что по созданным морфологическим цитоархитектоническим и миеолоархиктектоническим картам в последствии можно будет разработать соответствующие карты психических и физическихфункций коры и использовать эти карты в практическоймедицине.   В 1903 г. германский германский анатом, физиолог, психолог и психиатр К. Бродман (Korbinian Brodmann, 1868-1918) опубликовал описание пятидесяти двухцитоархитектонических полей коры. Поля К. Бродмана показаны на современной схеме слева. Дополненное новыми знаниями о структуре и функциях полей описание Brodmann Areas in the Human Brainсделанно Mark Dubin, Professor of the University of Colorado, см. URL: http://spot.colorado.edu/~dubin/talks/brodmann/brodmann.html. Доступ к данному источнику = Access to the reference). Праллельно и согласованно с исследованиями К. Бродмана в том же 1903 г. германские психоневрологи супруги О. Фогт и С. Фогт (Фохт, Oskar Vogt, 1870-1959, Cecile (Mugnier) Vogt, 1875-1962) на основании анатомо-физиологических исследований дали описание ста пятидесяти миелоархитектонических полей коры большого мозга. См. статьюLaurence Garey написанную о К. Бродмане (URL: http://www.ibro.org/docs/brodmann.pdf),  Доступ к данному источнику =Access to the reference.       Позже, на основании исследований структуры головного мозга, в основу которых был положен эволюционный принцип, сотрудники Института мозга СССР (основан в 20-х годах Москве, приглашенным туда для этих целей О. Фогтом) создали подробные карты цитомиелоархитектонических полей мозга человека.       Современная наука пока еще не достигла полностью генеральных целей, поставленных К. Бродманом и О. Фогтом о применении в медицине знаний о морфологии коры головного мозга, отраженных в картах цитомиелоархитектонических полей. Однако к настоящему времени ученые достигли заметных успехов в выяснении функций этих полей.

68. Поджелудочная железа - крупная пищеварительная и эндокринная железа, находится позади желудка, на задней стенке живота, на уровне нижних грудных (XI, XII) и верхних поясничных (I, II) позвонков. В проекции на брюшную стенку поджелудочная железа располагается на 5-10 см выше уровня пупка. Поджелудочная железа состоит из трех расположенных последовательно справа налево отделов: головки, тела и хвоста. Между головкой и телом находится небольшая суженная часть - шейка. В поджелудочной железе различают переднюю и заднюю поверхности, а в области тела - еще и нижнюю поверхность и три края: передний, верхний и нижний. Длина поджелудочной железы 16-22 см, ширина 3-9 см (в области головки), толщина 2-3 см; масса 70-80 г. Внешне форма железы напоминает лежащую латинскую букву S. Проток поджелудочной железы проходит от ее хвоста до головки, располагаясь в толще ее вещества. По пути прохождения протока в него впадают вторичные протоки из окружающих долей железы. Дойдя до правого края головки, проток открывается в двенадцатиперстную кишку, соединившись с общим желчным протоком в печеночно-поджелудочную ампулу. В области верхней части головки нередко имеется второй, добавочный проток поджелудочной железы, который открывается отдельным устьем выше основного на вершине малого сосочка двенадцатиперстной кишки.

Поджелудочная железа состоит из двух типов ткани, выполняющих совершенно разные функции. Собственно ткань поджелудочной железы составляют мелкие дольки - ацинусы, каждый из которых снабжен своим выводным протоком. Эти мелкие протоки сливаются в более крупные, в свою очередь впадающие в вирсунгов проток - главный выводной проток поджелудочной железы. Дольки почти целиком состоят из клеток, секретирующих сок поджелудочной железы (панкреатический сок, от лат. pancreas - поджелудочная железа). Панкреатический сок содержит пищеварительные ферменты. Из долек по мелким выводным протокам он поступает в главный проток, который впадает в двенадцатиперстную кишку. Между дольками вкраплены многочисленные группы клеток, не имеющие выводных протоков - это так называемые островки Лангерганса. Общее количество островков колеблется в пределах от одного до двух млн., а диаметр каждого 100- 300 мкм. Островковые клетки выделяют гормоны инсулин и глюкагон.

Поджелудочная железа имеет одновременно эндокринную и экзокринную функции, т.е. осуществляет внутреннюю и внешнюю секрецию. Экзокринная функция железы - участие в пищеварении.

Пищеварение. Часть железы, участвующая в пищеварении, через главный проток секретирует панкреатический сок прямо в двенадцатиперстную кишку. Экзокринная часть железы вырабатывает у человека в течении суток 500-700 мл панкреатического сока. Он содержит 4 необходимых для пищеварения фермента: амилазу, превращающую крахмал в сахар; трипсин и химотрипсин - протеолитические (расщепляющие белок) ферменты; липазу, которая расщепляет жиры; и реинин, створаживающий молоко. Таким образом, сок поджелудочной железы играет важную роль в переваривании основных питательных веществ.

Эндокринные функции. Островки Лангерганса функционируют как железы внутренней секреции (эндокринные железы), выделяя непосредственно в кровоток глюкагон и инсулин - гормоны, регулирующие метаболизм углеводов. Инсулин оказывает многостороннее влияние на организм. Гормон способствует превращению глюкозы в гликоген, жир, усиливает обмен углеводов в мышцах. Инсулин обладает анаболическим действием. Кроме того, он способствует образованию гепатоцитами и липоцитами триглицеридов из свободных жирных кислот. Глюкагон, подобно инсулину, усиливает образование триглицеридов из жирных кислот, но одновременно стимулирует их окисление в гепа-тоцитах, в связи с чем образуются кетоновые тела. Постоянный уровень глюкозы в крови в пределах 0,8-1,0 г/л регулируются инсулином и глюкагоном. При повышении концентрации глюкозы в крови, протекающей через поджелудочную железу, секреция инсулина клетками увеличивается и уровень глюкозы в крови уменьшается.

69. Анализаторы — совокупность нервных образований, обеспечивающих осознание и оценку действующих на организм раздражителей. Анализатор представляет собой функциональную систему, состоящую из воспринимающих раздражение рецепторов, проводящей части и центральной части — определенной области коры головного мозга, где формируются ощущения и обрабатывается поступившая информация.

Рецепторы — чувствительные окончания, превращающие энергию внешнего раздражителя в энергию нервных импульсов. Могут быть представлены свободными нервными окончаниями, чувствительными клетками, образованиями, окружающими нервные окончания и делающими его чувствительным. Различают интерорецепторы и проприорецепторы.

Проводниковая часть состоит из соответствующего нерва и проводящих путей.

Центральная часть — отдел ЦНС, включающий подкорковые ядра, обеспечивающие осуществление ориентировочных рефлексов, и корковый центр — ядро анализатора.

Зрительный анализатор — обеспечивает получение зрительной информации из окружающей среды и состоит из трех частей: периферической — глаз, проводниковой — зрительного нерва и центральной — подкорковой и зрительной зоны коры головного мозга.

Глаз состоит из глазного яблока и вспомогательного аппарата, к которому относятся веки, ресницы, слезные железы и мышцы глазного яблока.

Глазное яблоко расположено в глазнице и имеет шаровидную форму. Оно окружено тремя оболочками: фиброзной, задний отдел которой образован непрозрачной белочной оболочкой (склерой), сосудистой и сетчатой. Часть сосудистой оболочки, снабженную пигментами, называют радужной оболочкой. В сосудистую оболочку входит и ресничное тело, состоящее в основном из ресничной мышцы, изменяющей кривизну хрусталика. В центре радужной оболочки находится зрачок, который может изменять диаметр своего отверстия за счет сокращения кольцевых и радиальных мышц. Задняя часть сетчатки воспринимает световые раздражения. Передняя ее часть — слепая и не содержит светочувствительных элементов. Светочувствительными элементами сетчатки являются палочки (обеспечивают зрение в сумерках и темноте) и колбочки (рецепторы цветового зрения, работающие при высокой освещенности). Колбочки расположены ближе к центру сетчатки (желтое пятно), а палочки концентрируются на ее периферии. Место выхода зрительного нерва называют слепым пятном.

Полость глазного яблока заполнена стекловидным телом. Хрусталик имеет форму двояковыпуклой линзы. Он способен изменять свою кривизну при сокращениях ресничной мышцы. При рассматривании близких предметов хрусталик сжимается, при рассматривании отдаленных — расширяется. Такую способность хрусталика называют аккомодацией. Между роговицей и радужкой находится передняя камера глаза, между радужкой и хрусталиком — задняя камера. Обе камеры заполнены прозрачной жидкостью. Лучи света, отражаясь от предметов, проходят через роговицу, влажные камеры, хрусталик, стекловидное тело и благодаря преломлению в хрусталике попадают на желтое пятно сетчатки — место наилучшего видения. При этом возникает действительное, обратное, уменьшенное изображение предмета. От сетчатки по зрительному нерву импульсы поступают в центральную часть анализатора — зрительную зону коры мозга, расположенную в затылочной доле. В коре информация, полученная от рецепторов сетчатки, перерабатывается, и человек воспринимает естественное отражение объекта.

В светочувствительных рецепторах — палочках имеется красный пигмент — родопсин, а в колбочках — иодопсин. Фотохимические реакции способствуют разложению этих пигментов. В темноте они восстанавливаются. Для восстановления родопсина необходим витамин А. При его недостатке возникает куриная слепота, т.е. ослабление сумеречного зрения. С помощью колбочек человек различает красный, зеленый и сине-фиолетовый цвета. Остальные цвета различаются в зависимости от силы и совпадения во времени зрительных раздражений.

Нормальное зрительное восприятие обусловлено:

достаточным световым потоком;

фокусированием изображения на сетчатке (фокусирование перед сетчаткой означает близорукость, а за сетчаткой — дальнозоркость);

осуществлением аккомодационного рефлекса.

Важнейшим показателем зрения является его острота, т.е. предельная способность глаза различать мелкие объекты.

72. В живых организмах любой процесс сопровождается передачей энергии. Энергию определяют как способность совершать работу. Специальный раздел физики, который изучает свойства и превращения энергии в различных системах, называется термодинамикой. Под термодинамической системой понимают совокупность объектов, условно выделенных из окружающего пространства.

Термодинамические системы разделяют на изолированные, закрытые и открытые. Изолированными называют системы, энергия и масса которых не изменяется, т.е. они не обмениваются с окружающей средой ни веществом, ни энергией. Закрытые системы обмениваются с окружающей средой энергией, но не веществом, поэтому их масса остается постоянной.

Открытыми системами называют системы, обменивающиеся с окружающей средой веществом и энергией. С точки зрения термодинамики живые организмы относятся к открытым системам, так как главное условие их существования - непрерывный обмен веществ и энергии. В основе процессов жизнедеятельности лежат реакции атомов и молекул, протекающие в соответствии с теми же фундаментальными законами, которые управляют такими же реакциями вне организма.  Согласно первому закону термодинамики энергия не исчезает и не возникает вновь, а лишь переходит из одной формы в другую.

Второй закон термодинамики утверждает, что вся энергия, в конце концов, переходит в тепловую энергию, и организация материи становится полностью неупорядоченной. В более строгой форме этот закон формулируется так: энтропия замкнутой системы может только возрастать, а количество полезной энергии (т.е. той, с помощью которой может быть совершена работа) внутри системы может лишь убывать. Под энтропией понимают степень неупорядоченности системы.

Неизбежная тенденция к возрастанию энтропии, сопровождаемая столь же неизбежным превращением полезной химической энергии в бесполезную тепловую, заставляет живые системы захватывать все новые порции энергии (пищи), чтобы поддерживать свое структурное и функциональное состояние. Фактически способность извлекать полезную энергию из окружающей среды является одним из основных свойств, которые отличают живые системы от неживых, т.е. непрерывно идущий обмен веществ и энергии является одним из основных признаков живых существ. Чтобы противостоять увеличению энтропии, поддерживать свою структуру и функции, живые существа должны получать энергию в доступной для них форме из окружающей среды и возвращать в среду эквивалентное количество энергии в форме, менее пригодной для дальнейшего использования.

Обмен веществ и энергии - это совокупность физических, химических и физиологических процессов превращения веществ и энергии в живых организмах, а также обмен веществами и энергией между организмом и окружающей средой. Обмен веществ у живых организмов заключается в поступлении из внешней среды различных веществ, в превращении и использовании их в процессах жизнедеятельности и в выделении образующихся продуктов распада в окружающую среду.

Все происходящие в организме преобразования вещества и энергии объединены общим названием - метаболизм (обмен веществ). На клеточном уровне эти преобразования осуществляются через сложные последовательности реакций, называемые путями метаболизма, и могут включать тысячи разнообразных реакций. Эти реакции протекают не хаотически, а в строго определенной последовательности и регулируются множеством генетических и химических механизмов. Метаболизм можно разделить на два взаимосвязанных, но разнонаправленных процесса: анаболизм (ассимиляция) и катаболизм (диссимиляция).

Анаболизм - это совокупность процессов биосинтеза органических веществ (компонентов клетки и других структур органов и тканей). Он обеспечивает рост, развитие, обновление биологических структур, а также накопление энергии (синтез макроэргов). Анаболизм заключается в химической модификации и перестройке поступающих с пищей молекул в другие более сложные биологические молекулы. Например, включение аминокислот в синтезируемые клеткой белки в соответствии с инструкцией, содержащейся в генетическом материале данной клетки.

Катаболизм - это совокупность процессов расщепления сложных молекул до более простых веществ с использованием части из них в качестве субстратов для биосинтеза и расщеплением другой части до конечных продуктов метаболизма с образованием энергии. К конечным продуктам метаболизма относятся вода (у человека примерно 350 мл в день), двуокись углерода (около 230 мл/мин), окись углерода (0,007 мл/мин), мочевина (около 30 г/день), а также другие вещества, содержащие азот (примерно б г/день).

Катаболизм обеспечивает извлечение химической энергии из содержащихся в пище молекул и использование этой энергии на обеспечение необходимых функций. Например, образование свободных аминокислот в результате расщепления поступающих с пищей белков и последующее окисление этих аминокислот в клетке с образованием СО2, и Н2О, что сопровождается высвобождением энергии.

Процессы анаболизма и катаболизма находятся в организме в состоянии динамического равновесия. Преобладание анаболических процессов над катаболическими приводит к росту, накоплению массы тканей, а преобладание катаболических процессов ведет к частичному разрушению тканевых структур. Состояние равновесного или неравновесного соотношения анаболизма и катаболизма зависит от возраста (в детском возрасте преобладает анаболизм, у взрослых обычно наблюдается равновесие, в старческом возрасте преобладает катаболизм), состояния здоровья, выполняемой организмом физической или психоэмоциональной нагрузки.

73. Торможение — в физиологии — активный нервный процесс, вызываемый возбуждением и проявляющийся в угнетении или предупреждении другой волны возбуждения. Обеспечивает (вместе с возбуждением) нормальную деятельность всех органов и организма в целом. Имеет охранительное значение (в первую очередь для нервных клеток коры головного мозга), защищая нервную систему от перевозбуждения.

И. П. Павлов называл иррадиацию торможения по коре больших полушарий головного мозга «проклятым вопросом физиологии».