Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
физиология 2.docx
Скачиваний:
7
Добавлен:
19.09.2019
Размер:
185.63 Кб
Скачать

Структура

Начинается из левого желудочка, выбрасывающего во время систолы кровь в аорту. От аорты отходят многочисленные артерии, в результате кровоток распределяется согласно сегментарному строению по сосудистым сетям, обеспечивая подачу кислорода и питательных веществ всем органам и тканям. Дальнейшее деление артерий происходит на артериолы и капилляры. Общая площадь всех капилляров в организме человека примерно 1000 м2. Через тонкие стенки капилляров артериальная кровь отдаёт клеткам тела питательные вещества и кислород, а забирает от них углекислый газ и продукты метаболизма, попадает в венулы становясь венозной. Венулы собираются в вены. К правому предсердию подходят две полые вены: верхняя и нижняя, которыми заканчивается большой круг кровообращения. Время прохождения крови по большому кругу кровообращения составляет 24 секунды.

Функции

Кровоснабжение всех органов организма человека, в том числе лёгких.

Малый (лёгочный) круг кровообращения Структура.

Начинается в правом желудочке, выбрасывающем венозную кровь в лёгочный ствол. Лёгочный ствол делится на правую и левую лёгочные артерии. Лёгочные артерии дихотомически делятся на долевые, сегментарные и субсегментарные артерии. Субсегментарные артерии делятся на артериолы, распадающиеся на капилляры. Отток крови идет по венам, которые собираются в обратном порядке и в количестве четырёх штук впадают в левое предсердие, где заканчивается малый круг кровообращения. Кругооборот крови в малом круге кровообращения происходит за 4-12 секунд.

Малый круг кровообращения впервые был описан Мигелем Серветом в XVI веке в книге «Восстановление христианства»[1].

Функции

Основная задача малого круга газообмен в лёгочных альвеолах и теплоотдача.

Кровоснабжение сердца или венечный круг кровообращения

Коронарное кровообращение

Представляет собой часть большого круга кровообращения, но в связи с важностью сердца и его кровоснабжения иногда можно встретить упоминание об этом круге в литературе[2][3][4].

Артериальная кровь поступает к сердцу по правой и левой коронарным артериям, берущим начало у аорты выше её полулунных клапанов. Левая коронарная артерия разделяется на две или три, реже четыре артерии, из которых наибольшее клинически значимыми являются передняя нисходящая (ПМЖВ) и огибающая ветви (ОВ). Передняя нисходящая ветвь является непосредственным продолжением левой коронарной артерии и спускается к верхушке сердца. Огибающая ветвь отходит от левой коронарной артерии в её начале приблизительно под прямым углом, огибает сердце спереди назад, иногда достигая по задней стенке межжелудочковой борозды. Артерии заходят в мышечную стенку, ветвясь до капилляров. Отток венозной крови происходит преимущественно в 3 вены сердца: большую, среднюю и малую. Сливаясь, они образуют венечный синус, открывающийся в правое предсердие. Остальная кровь оттекает по передним сердечным венам и тебезиевым венам.

Миокард характеризуется повышенным потреблением кислорода. Около 1 % минутного объема крови поступает в коронарные сосуды.

Поскольку коронарные сосуды начинаются непосредственно от аорты, они заполняются кровью в диастолу сердца. В систолу коронарные сосуды пережаты. Капилляры кровеносных сосудов конечные и не имеют анастомозов. Поэтому при закупорке тромбом прекапиллярного сосуда возникает инфаркт (обескровливание) значительного участка сердечной мышцы[5]

58. Генотип — это совокупность всех генов организма, являющихся его наследственной основой.

Фенотип — совокупность всех признаков и свойств организма, которые выявляются в процессе индивидуального развития в данных условиях и являются результатом взаимодействия генотипа с комплексом факторов внутренней и внешней среды.

Каждый биологический вид имеет свойственный только ему фенотип. Он формируется в соответствии с наследственной информацией, заложенной в генах. Однако в зависимости от изменений внешней среды состояние признаков варьирует от организма к организму, в результате чего возникают индивидуальные различия — изменчивость.

На основе изменчивости организмов появляется генетическое разнообразие форм. Различают изменчивость модификационную, или фенотипическую, и генетическую, или мутационную.

Модификационная изменчивость не вызывает изменений генотипа, она связана с реакцией данного, одного и того же генотипа на изменение внешней среды: в оптимальных условиях выявляется максимум возможностей, присущих данному генотипу. Модификационная изменчивость проявляется в количественных и качественных отклонениях от исходной нормы, которые не передаются по наследству, а носят лишь приспособительный характер, например, усиление пигментации кожи человека под действием ультрафиолетовых лучей или развития мышечной системы под действием физических упражнений и т. д.

Степень варьирования признака у организма, то есть пределы модификационной изменчивости называются нормой реакции. Таким образом, фенотип формируется в результате взаимодействия генотипа и факторов среды, Фенотипические признаки не передаются от родителей к потомкам, наследуется лишь норма реакции, то есть характер реагирования на изменение окружающих условий.

Генетическая изменчивость бывает комбинативной и мутационной.

Комбинативная изменчивость возникает в результате обмена гомологичными участками гомологичных хромосом в процессе мейоза, что приводит к образованию новых объединений генов в генотипе. Возникает в результате трех процессов: 1) независимого расхождения хромосом в процессе мейоза; 2) случайного соединения их при оплодотворении; 3) обмена участками гомологичных хромосом или конъюгации. .

Мутационная изменчивость (мутации). Мутациями называют скачкообразные и устойчивые изменения единиц наследственности — генов, влекущие за собой изменения наследственных признаков. Они обязательно вызывают изменения генотипа, которые наследуются потомством и не связаны со скрещиванием и рекомбинацией генов.

Существуют хромосомные и генные мутации. Хромосомные мутации связаны с изменением структуры хромосом. Это может быть изменение числа хромосом кратное или не кратное гаплоидному набору (у растений — полиплоидия, у человека — гетероплоидия). Примером гетероплоидии у человека может быть синдром Дауна (одна лишняя хромосома и в кариотипе 47 хромосом), синдром Шерешевского — Тернера (отсутствует одна Х-хромосома, 45). Такие отклонения в кариотипе человека сопровождаются расстройством здоровья, нарушение психики и телосложения, снижением жизнеспособности и др.

Генные мутации — затрагивают структуру самого гена и влекут за собой изменение свойств организма (гемофилия, дальтонизм, альбинизм и др.). Генные мутации возникают как в соматических, так и в половых клетках.

Мутации, возникающие в половых клетках, передаются по наследству. Их называют генеративными мутациями. Изменения в соматических клетках вызывают соматические мутации, распространяющиеся на ту часть тела, которая развивается из изменившейся клетки. Для видов, размножающихся половым путем, они не имеют существенного значения, для вегетативного размножения растений они важны.

60. В норме в состоянии покоя у взрослых частота сердечных сокращений составляет 60—80 в 1 мин. У новорожденных в регуляции деятельности сердца доминирующую роль играет симпатическая нервная система, что наряду с высоким обменом веществ обусловливает высокую частоту сердечных сокращений. По мере повышения в регуляции С. роли блуждающего нерва частота пульса с возрастом постепенно уменьшается. У новорожденных она составляет 120—140 в 1 мин, в возрасте 6 мес. — 130—135, в 1 год — 120—125, в 2—4 года — 100—115, в 5—7 лет — 85—100, в 8—11 лет — 80—85, в 12—15 лет — 70—80 в 1 мин. Число сердечных сокращений у детей одного и того же возраста подвержено индивидуальным колебаниям и зависит от температуры, приема пищи, времени суток, эмоционального состояния и др. У здоровых детей часто наблюдается синусовая (дыхательная) аритмия — вагусный пульс, особенно выраженная у детей дошкольного и школьного возраста. Величина ударного и минутного объемов сердца у детей с возрастом увеличивается при уменьшении отношения минутного объема сердца к весу тела ребенка. Это отношение, характеризующее потребность организма в кислороде, выше у новорожденных и у детей грудного возраста. Различия ударного и минутного объемов в зависимости от пола ребенка выявляются после 10 лет.

62. Эндокри́нная систе́ма — система регуляции деятельности внутренних органов посредством гормонов, выделяемых эндокринными клетками непосредственно в кровь, либо диффундирующих через межклеточное пространство в соседние клетки.

Не́йроэндокри́нная (эндокринная) система координирует и регулирует деятельность практически всех органов и систем организма, обеспечивает его адаптацию к постоянно изменяющимся условиям внешней и внутренней среды, сохраняя постоянство внутренней среды, необходимое для поддержания нормальной жизнедеятельности данного индивидуума. Имеются чёткие указания на то, что осуществление перечисленных функций нейроэндокринной системы возможно только в тесном взаимодействии с иммунной системой[1].

Эндокринная система делится на гландулярную эндокринную систему (или гландулярный аппарат), в которой эндокринные клетки собраны вместе и формируют железу внутренней секреции, и диффузную эндокринную систему. Железа внутренней секреции производит гландулярные гормоны, к которым относятся все стероидные гормоны, гормоны щитовидной железы и многие пептидные гормоны. Диффузная эндокринная система представлена рассеянными по всему организму эндокринными клетками, продуцирующими гормоны, называемые агландулярными — (за исключением кальцитриола) пептиды. Практически в любой ткани организма имеются эндокринные клетки.