Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Оветы по ГИС.doc
Скачиваний:
74
Добавлен:
19.09.2019
Размер:
4.31 Mб
Скачать

№ 43. Профилеметрия скважин: типы профилемеров, изображение результатов измерений, решаемые задачи.

В бурящихся скважинах несоответствие формы открытого ствола круглому сечению свидетельствует о наличии желоба. Образуется желоб (рисунок , в) в результате разрушения горных пород буровым инструментом и его замковыми соединениями в процессе бурения (особенно когда бурение ведется роторным способом) и при спуске- подъеме инструмента. Развитие желобов осложняет бурение сква­жины и разработку месторождений. В этих зонах наблюдаются за­тяжки бурового инструмента, которые могут привести к прихватам; возникают трудности при спуске обсадных колонн; могут возникнуть заколонные перетоки.

Только в разведочном бурении четверть всех аварий связана с прихватами инструмента в желобах. На ликвидацию этих прихва­тов расходуется до 50% аварийного времени. Желоб в разрезе скважины выделяют с помощью профилемеров. В приборах этого типа в отличие от каверномеров раздельно регист­рируются показания каждой пары рычагов, расположенных в одной плоскости.

Рис. 1. Примеры выделения в разрезе скважин желоба.

а — профилеграмма, полученная прибором СКП; б —диаграммы поперечного сечения скважины, построенные по результатам измерения прибором СПР; в — схема образо­вания желоба. 1 — песчаник; 2 — глина; 3 — азимут желоба

Скважинный каверномер-профилемер СКП позволяет одно­временно непрерывно регистрировать три кривые: кавернограмму и две кривые для диаметров скважины в двух взаимно пер­пендикулярных плоскостях. Диаметры скважин определяют по ве­личине раскрытия двух пар независимо перемещающихся из­мерительных рычагов. Информация передается по одножильному кабелю с использованием схемы частотного разделения сигналов. Пример профилеграммы приведен на рис. 1, а.

После обнаружения желоба, протяженность которого превышает размер свечи, проводят детальное изучение поперечного сечения скважины. Для этой цели применяют аппаратуру СПР — скважин­ный профилемер-радиусомер с восемью измерительными рычага­ми. Замеры в скважинах проводят дискретно по точкам. Прибор ус­танавливают в исследуемом интервале и затем последовательно сни­мают показания с каждого из восьми измерительных рычагов. Замеры, привязанные по азимуту, позволяют построить диаграммы поперечного сечения скважины (рис. 1,б).

Желоб считается прихватоопасным, если глубина его превышает половину диаметра замкового соединения; если развился он в вер­тикальной плоскости направления скважины, приурочен к местам зенитного перегиба ствола скважины и стабилен во времени.

Для предупреждения прихвата и ликвидации опасного лечения профиля скважины выполняют торпедирование.

№ 44. Литологическое расчленение разреза по данным гис.

Литологическое расчленение разреза скважины выполняют по данным полного комплекса ГИС. Методику расчленения рассмотрим на примере трех наиболее типичных разрезов (терригенного, карбо­натного и галогенного) для скважин, пробуренных на глинистом растворе.

Р ис. 1. Примеры литологического расчленения и выделения коллекторов в терригенных отложениях по данным ГИС. 1 — коллектор (песчаник);2 — неколлектор (глинистый алевролит);3 — глина. Терригенный разрез. Литологическое расчленение разреза по данным ГИС проводят по следующей схеме: а) разделение пород на коллекторы и неколлекторы; б) выделение среди коллекторов и неколлекторов отдельных литологических разностей. В терригенном разрезе неколлекторы делятся на глины и все прочие породы, представляющие неколлекторы. Глины выделяются на кавернограмме прежде всего в интервалах увеличения диаметра скважины по сравнению с номинальным. К неколлекторам относят породы, отмечаемые номинальным значением диаметра на кавернограмме. Глинам соответствуют наиболее высокие показания СП и ГМ, низкие удельные сопротивления, наиболее низкие показания НГМ и микрозондов (рис. 1). В остальной части разреза (за исключением коллекторов и глин) выделяют классы неколлекторов с различной глинистостью и пористостью по диаграммам методов глинистости (СП, ГМ), пористости (ННМ-Т, AM, ГГМ) и метода сопротивлений. Обычно удается четко выделить по крайней мере два класса неколлекторов. К первому классу относятся глинистые песчаники и алевролиты, характеризующиеся более низкой пористостью и более высокой глинистостью по сравнению с худшими коллекторами; они отмечаются высокими показаниями на диаграммах БЭЗ, БК и микрозондов, низкими значениями AT на диаграмме AM, повышенными показаниями НГМ, промежуточными значениями на диаграммах СП и ГМ, но более близкими к показаниям в худших коллекторах. Второй класс включает глины, содержащие песчаный, алевритовый или карбонатный материал, для кото­рых характерны показания всех методов, типичные для глин. Некоторое отличие их заключается в небольшом увеличении удельного сопротивления по сравнению с сопротивлением чистых глин, в наличии незначительных отрицательных аномалий СП по отношению к линии чистых глин и в незначительном понижении радиоактивности по сравнению с чистыми глинами на диаграмме ГМ. В терригенном разрезе возможно также присутствие неколлекторов, представленных песчаниками и алевролитами с карбонатным цементом и плотными известняками. Эти породы отмечаются обычно низкими показаниями на диаграммах СП и ГМ — такими же, как чистые коллекторы; но наряду с этим для них характерны высокие показания на диаграммах НГМ, микрозондов и минимальные значения ДТ на диаграмме акустического метода.

Р ис. 2. Пример литологического расчленения карбонатного разреза по данным ГИС. 1 — известняк плотный; 2 — известняк-коллектор; 3 — глина. Карбонатный разрез Карбонатный разрез расчленяют по данным ГИС следующим образом. Сначала выделяют межзерновые коллекторы. В остальной части разреза проводят литологическое расчленение с выделением сложных коллекторов и коллекторов различных видов. Рассмотрим методику такого расчленения. Вначале выделяют интервалы, соответствующие глинам (по тем же признакам, что и в терригенном разрезе) и карбонатным породам с повышенным содержанием нерастворимого остатка, которые отмечаются повышенными значениями UСП (иногда на уровне линии глин) и естественной радиоактивности. Карбонатные породы с высокими значениями UСП, как правило, являются неколлекторами и лишь в редких случаях могут быть трещинным коллектором с низкой эффективной пористостью (рис.2). Остальная часть разреза (за исключением межзерновых коллекторов, глин и пород с повышенным содержанием нерастворимого остатка), представленная низкопористыми чистыми известняками и доломитами, расчленяется на классы неколлекторов и кавернознотрещинных коллекторов по фильтрационным свойствам и на классы известняков, доломитов и промежуточных литологических разностей по минеральному составу скелета. Первая задача может быть решена по диаграммам стандартного комплекса и специальных исследо­ваний ГИС, вторая — по данным комплексной интерпретации диаграмм ННМ-Т, ГГМ и акустического метода.

Гидрохимический разрез. Разрез, представленный гидрохимическими отложениями, рас­членяют в основном по данным ядерных методов — нейтронного (ННМ), гамма-метода (ГМ) и гамма-гамма-метода (ГГМ) с использованием результатов акустического метода и кавернометрии. В этом разрезе по данным ГИС устанавливается наличие следующих литологических разностей: гипса — по низким показаниям ННМ, соответствующим высокому водородосодержанию, при низкой пористости (менее 1%) — по данным ГГМ и AM; ангидрита — по высоким показаниям ННМ, при низкой пористости — по данным ГГМ и AM; каменной соли — по высоким показаниям ННМ при увеличении диаметра скважины на кавернограмме и низкой естественной радиоактивности; калийных солей — по высоким показаниям ННМ и ГМ и увеличению диаметра скважины на кавернограмме. Прослои глины и аргиллита в гидрохимических отложениях устанавливают по тем же признакам, что и в карбонатном и терригенном разрезах.