Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Архи конечные шпоры(1).docx
Скачиваний:
22
Добавлен:
24.09.2019
Размер:
1.13 Mб
Скачать

8. Способы создания и потери предварительного напряжения арматуры

Для предварительного напряжения железобетонных элементов необходимо провести натяжение арматуры и передачи ее реактивного давления на бетон с целью его обжатия. Для натяжения арматуры используют несколько способов: механический, электромермический, электротермомеханический, физико-химический (самонапряжение).

Электротермическим способом изготовляют около 80% всех предварительно напряженных конструкций. Стержни арматуры нагревают до температуры 300...350°С с помощью электротока и в нагретом состоянии устанавливают в упоры формы. При остывании стержни, стремясь сократиться, натягиваются, что используется для обжатия бетона. Этот способ отличается простотой, малой трудоемкостью и сравнительно низкой стоимостью. Однако точность натяжения этим способом ниже, чем при других способах. Электротермомеханический способ является комбинированным, он применяется при непрерывном армировании. Высокопрочную проволоку, нагретую электротоком до 300...350°С, навивают на упоры формы или стенда намоточной машиной. При этом необходимая мощность механических приспособлений для намотки значительно снижается. После остывания проволока дополнительно получает предварительное напряжение.

При физико-химическом способе используется свойство бетонов, изготовленных с применением расширяющихся цементов. При расширении бетона в процессе твердения арматура также удлиняется, отчего в ней создается предварительное напряжение. Принцип самонапряжения конструкций является весьма перспективным, так как дает возможность обойтись без сложных приспособлений для натяжения арматуры.

Начальные предварительные напряжения в арматуре не остаются постоянными, с течением времени они уменьшаются. Различают первые потери предварительного напряжения в арматуре, происходящие при изготовлении элемента и обжатии бетона, и вторые потери, происходящие после обжатия бетона.

Первые потери

1. Потери от релаксации напряжений в арматуре при натяжении на упоры зависят от епособа натяжения и вида арматуры:

при механическом способе натяжения, МПа: высокопрочной арматурной проволоки и канатов, стержневой арматуры; при электротермическом и электротермомеханическом способах натяжения: высокопрочной арматурной проволоки и канатов, стержневой арматуры.

2. Потери от температурного перепада, т. е. от разности температуры натянутой арматуры и устройств, воспринимающих усилие натяжения при пропаривании или прогреве бетона.

3. Потери от деформации анкеров, расположенных у натяжиых устройств вследствие обжатия шайб, смятия высаженных головок, смещения стержней в зажимах или в захватах при механическом натяжении на упоры.

4. Потери от трения арматуры:

а) о стенки каналов или поверхность конструкции при натяжении на бетон

б) об огибающие приспособления при натяжении на упоры

5. Потери от быстронатекающей ползучести бетона зависят от условий твердения, уровня напряжений и класса бетона; развиваются они при обжатии (и в первые 2—3 ч после обжатия).

Вторые потери

6. Потери от релаксации напряжений в арматуре при натяжении на бетон высокопрочной арматурной проволоки и стержневой арматуры принимаются такими же, как и при натяжении на упоры. 8. Потери от усадки бетона и укорочения элемента зависят от вида бетона, способа натяжения арматуры, условий твердения.

7. Потери от ползучести бетона (следствие соответствующего укорочения элемента) зависят от вида бетона, условий твердения, уровня напряжений

8. Потери от смятия бетона под витками спиральной или кольцевой арматуры (при диаметре труб, резервуаров до 3 м)

9. Потери от деформаций обжатия стыков между блоками сборных конструкций.