Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Вопросы к экзамену ИВТ.docx
Скачиваний:
11
Добавлен:
26.09.2019
Размер:
183.75 Кб
Скачать

http://www.metod-kopilka.ru/page-6-1-3.html

  1. Понятие информации. Определение информации по Шеннону и Колмогорову. Определение количества информации. Энтропия как мера неопределенности сообщений. Единицы измерения информации. Информационный объем сообщения.

Информация — сведения об объектах и явлениях окружающей среды, их параметрах, свойствах и состоянии, которые воспринимают информацион­ные системы (живые организмы, управляющие машины и др.) в процессе жизнедеятельности и работы. Согласно Шеннону, информативность сообщения характеризуется содержащейся в нем полезной информацией - той частью сообщения, которая снимает полностью или уменьшает неопределенность какой-либо ситуации. Шеннон был первым, кто разработал математическое определение понятия информации. Его измерение информации, которое приведено в битах (двоичная единица информации.

Определение информации, согласно Шеннону, ограничивается только одним аспектом информации, а именно ее свойством выражать что-то новое: информационное содержание определяется в терминах новизны.

Согласно Колмогорову, информативность последовательности символов не зависит от содержания сообщения, а определяется минимально необходимым количеством символов для ее кодирования. Алфавитный подход является объективным, т.е. он не зависит от субъекта, воспринимающего сообщение. Смысл сообщения учитывается на этапе выбора алфавита кодирования либо не учитывается вообще. На первый взгляд определения Шеннона и Колмогорова кажутся разными, тем не менее, они хорошо согласуются при выборе единиц измерения. Количество информации можно рассматривать как меру уменьшения неопределенности знания при получении информационных сообщений. Определение количества информационных сообщений. По формуле (1.1) можно легко определить количество возможных информационных сообщений, если известно количество информации. Например, на экзамене вы берете экзаменационный билет, и учитель сообщает, что зрительное информационное сообщение о его номере несет 5 битов информации. Если вы хотите определить количество экзаменационных билетов, то достаточно определить количество возможных информационных сообщений об их номерах по формуле (1.1):N = 25 = 32.Таким образом, количество экзаменационных билетов равно 32.

Энтропия — это количество информации, приходящейся на одно элементарное сообщение источника, вырабатывающего статистически независимые сообщения.

Байт- единица хранения и обработки цифровой информации. В современных вычислительных системах байт считается равным восьми битам, в этом случае он может принимать одно из 256 (28) различных значений. Килобайт - единица измерения количества информации, равная 1024 байтам. Мегабайт-единица измерения количества информации, равная, в зависимости от контекста, 1 000 000 (106) или 1 048 576 (220байтам. Гигабайт - кратная единица измерения количества информации, равная 109 = 1 000 000 000байт. Часто используется для обозначения 230 = 1 073 741 824 байт[1].Терабайт, Петабайт, Эксабайт, Зеттабайт, Йоттабайт.

Что нужно знать: с помощью бит можно закодировать Q = 2K различных вариантов (чисел)таблица степеней двойки, она же показывает, сколько вариантов Q можно закодировать с помощью Kбит:

K, бит

1

2

3

4

5

6

7

8

9

10

Q, вариантов

2

4

8

16

32

64

128

256

512

1024

при измерении количества информации принимается, что в одном байте 8 бит, а в одном килобайте (1 кбайт) – 1024 байта, в мегабайте (1Мбайт) – 1024 кбайта1чтобы найти информационный объем сообщения (текста) I, нужно умножить количество символов (отсчетов) N на число бит на символ (отсчет) KI = N * K.две строчки текста не могут занимать 100 кбайт в памяти. Мощность алфавита – это количество символов в этом алфавите.

  1. Представление числовой информации. Системы счисления. Кодирование текста. Ascii коды. Кодирование графических данных. Кодирование звука.

Представление чисел в памяти компьютера имеет специфическую особенность, связанную с тем, что в памяти компьютера числа должны располагаться в байтах — минимальных по размеру адресуемых ячейках памяти. Адресом числа считают адрес первого байта. В байте может содержаться произвольный код из восьми двоичных разрядов.

Целые числа представляются в памяти компьютера с фиксированной запятой. В этом случае каждому разряду ячейки памяти компьютера соответствует один и тот же разряд числа, запятая находится справа после младшего разряда (то есть вне разрядной сетки).

Для кодирования целых чисел от 0 до 255 достаточно иметь 8 разрядов двоичного кода (8 бит).

Для кодирования целых чисел от 0 до 65 535 требуется шестнадцать бит; 24 бита позволяют закодировать более 16,5 миллионов разных значений.

Если для представления целого числа в памяти компьютера отведено N бит, то количество различных значений будет равно 2N.

Максимальное значение целого неотрицательного числа достигается в случае, когда во всех ячейках стоят единицы. Если под представление целого положительного числа отведено N бит, то максимальное значение будет равно 2N -1.

Прямой код целого числа может быть получен следующим образом: число переводится в двоичную систему счисления, а затем его двоичную запись слева дополняют необходимым количеством незначащих нулей, соответствующим количеству незаполненных разрядов, отведённых для хранения числа.

Система счисления — символический метод записи чисел, представление чисел с помощью письменных знаков. Первой такой 7-разрядной кодовой таблицей была ASCII (American Standard Code for Information Interchange), опубликованная как стандарт в 1963 г. американской организацией по стандартизации American Standards Association (ASA), которая позднее стала именоваться ANSI (American National Standards Institute.

Система счисления:

  • даёт представления множества чисел (целых и/или вещественных);

  • даёт каждому числу уникальное представление (или, по крайней мере, стандартное представление);

  • отражает алгебраическую и арифметическую структуру чисел.

Системы счисления подразделяются на позиционные, непозиционные и смешанные.

ASCII (англ. American Standard Code for Information Interchange) — американская стандартная кодировочная таблица для печатных символов и некоторых специальных кодов.

ASCII представляет собой кодировку для представления десятичных цифр, латинского и национального алфавитов, знаков препинания и управляющих символов. Изначально разработанная как 7-битная, с широким распространением 8-битного байта ASCII стала восприниматься как половина 8-битной. В компьютерах обычно используют расширения ASCII с задействованным 8-м битом и второй половиной кодовой таблицы (например КОИ-8).

Для кодирования цветных графических изображений применяется принцип декомпозиции произвольного цвета на основные составляющие. В качестве таких составляющих используют три основных цвета: красный (Red , R), зеленый (Green , G) и синий (Blue , В). На практике считается (хотя теоретически это не совсем так), что любой цвет, видимый человеческим глазом, можно получить путем механического смешения этих трех основных цветов. Такая система кодирования называется системой RGB по первым буквам названий основных цветов.

Если для кодирования яркости каждой из основных составляющих использовать по 256 значений (восемь двоичных разрядов), как это принято для полутоновых черно-белых изображений, то на кодирование цвета одной точки надо затратить 24 разряда. При этом система кодирования обеспечивает однозначное определение16,5 млн различных цветов, что на самом деле близко к чувствительности человеческого глаза. Режим представления цветной графики с использованием 24 двоичных разрядов называется полноцветным (True Color).

Каждому из основных цветов можно поставить в соответствие дополнительный цвет, то есть цвет, дополняющий основной цвет до белого. Нетрудно заметить, что для любого из основных цветов дополнительным будет цвет, образованный суммой пары остальных основных цветов. Соответственно, дополнительными цветами являются: голубой (Cyan , С), пурпурный (Magenta , M) и желтый (Yellow , У). Принцип декомпозиции произвольного цвета на составляющие компоненты можно применять не только для основных цветов, но и для дополнительных, то есть любой цвет можно представить в виде суммы голубой, пурпурной и желтой составляющей.Такой метод кодирования цвета принят в полиграфии, но в полиграфии используется еще и четвертая краска — черная (Black , К). Поэтому данная система кодирования обозначается четырьмя буквами CMYK (черный цвет обозначается буквой К, потому, что буква В уже занята синим цветом), и для представления цветной графики в этой системе надо иметь 32 двоичных разряда. Такой режим тоже называется полноцветным (True Color).

Звуковые волны при помощи микрофона превращаются в аналоговый переменный электрический сигнал. Он проходит через звуковой тракт и попадает в аналого-цифровой преобразователь (АЦП) - устройство, которое переводит сигнал в цифровую форму. В упрощенном виде принцип работы АЦП заключается в следующем: он измеряет через определенные промежутки времени амплитуду сигнала и передает дальше, уже по цифровому тракту, последовательность чисел, несущих информацию об изменениях амплитуды.Во время аналого-цифрового преобразования никакого физического преобразования не происходит. С электрического сигнала снимается отпечаток, являющийся цифровой моделью колебаний напряжения в аудиотракте. Цифровой сигнал по своей природе дискретен – т. е. прерывист, поэтому цифровая модель не совсем точно соответствует форме аналогового сигнала.