Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ИЗМ_Монитора_Лабораторная работа N 4.doc
Скачиваний:
2
Добавлен:
18.11.2019
Размер:
98.82 Кб
Скачать

Лабораторная работа n 4 Контроль уровни оптического и ультрафиолетового излучения от экранов персональных компьютеров

  1. Цель работы

Ознакомить студентов со спецификой оптических фотометрических измерений в видимой области спектра и в области ультрафиолетового излучения на примере измерения излучения экрана компьютера с цветным монитором.

Оценить степень экологической безопасности длительного - в течении 8-ми часового рабочего дня - времени пользования компьютером, а также измерить эффективность снижение уровня ультрафиолетового излучения защитным экраном.

  1. Содержание работы.

Ознакомиться с процедурой измерения яркости экрана компьютера при чистых красном, зеленом и синем цветах экрана. Поскольку экологически вредное воздействие оказывает в основном ультрафиолетовое излучение с длиной волны менее 0,35 мкм, в измерениях особое внимание нужно уделять не только оптическим измерениям светимости и освещенности, а энергетическим фотометрическим величинам – энергетической светимости и освещенности в диапазоне длин волн 0,35 - 0,2 мкм.

Дня этой цели создаются специальные люксметры – УФ радиометры, позволяющие измерять традиционные освещенности и яркости в люксах, а также измерять иштральный уровень ультрафиолетового излучения в ваттах на квадратный метр поверхности.

Важное экологическое значение с точки зрения степени утомляемости человеческого глаза имеет равномерность яркости экрана и "мерцание" экрана, т.е. колебания яркости изображения.

Данная работа предполагает проведение измерений оптической светимости экрана и освещенности глаз оператора, а также аналогичных энергетических величин в ультрафиолетовой области спектра. В измерениях используется люксметр • УФ радиометр типа ТКА-01 , позволяющий раздельно измерять освещенность в точке расположения фотоприемника и энергетическую ультрафиолетовую освещенность в той же точке. Отдельный режим работы прибора ТКА-01 предусматривает измерение отношения оптической освещенности к энергетической ультрафиолетовой освещенности.

В процессе работы необходимо также измерить светимость экрана и уровень "мерцании" за определенный промежуток времени.

Все измерения следует проводить и оформить в соответствии с требованиями метрологических а санитарных служб.

  1. Теоретическое обоснование

В оптической фотометрии наиболее часто измеряемая величина - освещенность - определяется как:

(1)

где – световой поток, падающий на поверхность, и - площадь поверхности. Основная величина в оптических измерениях - сила света в канделах – определяется как

(2)

где - сила света в канделах, - телесный угол в стерадианах. Для равномерного испускания точечного источника света по всем направлениям угол равен стерадиан и равенство 2 имеет вид:

(3)

Единицей светового потока является люмен (лм) т.е. поток внутри телесного угла в один стерадиан при силе света в одну канделу. Освещенность по формуле 1 при измерении площади в квадратных метрах выражается в люменах на квадратный метр. Эта единица называется люкс, т.е.

Ту же размерность имеет еще одна светотехническая величина - светимость, определяемая как.

(5)

где в отличие от формулы 1 под разумеется световой поток, испускаемый самосветящейся поверхностью. Светимость выражается в люменах с квадратного метра (но не в люксах!), подчеркивая тем самым разницу в характеристиках самосветящихся и несамосветящихся объектов.

Для источника света с большой излучающей поверхностью, одним из которых является светящийся экран компьютера, важно не только определить общую излучаемую энергию светового, потока, но и энергию излучения единицы площади излучающей поверхности. Дня этого нужно знать силу света, рассчитанную на единицу видимой поверхности источника. Эта специфическая световая величина называется яркостью источника. Яркость светящейся поверхности определяется как:

(6)

Используя определение силы света (формула 3), имеем:

(7)

Здесь угол есть угол между нормалью к излучающей поверхности и направлением наблюдения.

Для несамосветящихся объектов яркость определяется как освещенность, отнесенная к величине телесного угла, под которым наблюдается отраженное поверхностью излучение:

(8)

Поскольку человеческий глаз ультрафиолетовое излучение не воспринимает, категории освещенности и яркости для этой области спектра неприменимы. В этом случае используют энергетические фотометрические величины и единицы, которые формально выражаются теми же формулами, что и светотехнические, но вводятся как чисто энергетические. Энергетический световой поток выражается в ваттах, энергетические освещенность и яркость выражаются в ваттах та квадратный метр, т.е.:

(9)

Важной характеристикой оптического излучения является видность, т.е. отношение светового потоки к истинной полной мощности лучистой энергии

(10)

Для среднестатистического человеческого глаза видность имеет максимум на длине волны 0,55 мкм, спадая в красную и ультрафиолетовую области спектра. Максимальная видность при длине волны 0,55 мкм составляет 683 люмена на ватт. Эта величина называется механическим эквивалентом света , т.е. при

(11)

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]