Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ЭКЗАМЕНАЦИОННЫЕ ВОПРСЫ-ОТВЕТЫdocx.docx
Скачиваний:
873
Добавлен:
13.05.2015
Размер:
797.76 Кб
Скачать

3. Задача. При анализе экг обследуемого было сделано заключение о нарушении процессов восстановления в миокарде желудочков. На основании каких изменений на экг было сделано такое заключение?

?????????????????????

Интервал S - T соответствует медленной реполяризации желудочков, зубец Т - быстрой. Векторы зубца Т во фронтальной плоскости почти параллельны вектору QRS, в связи с этим полярность обычно совпадает с таковой главного зубца комплекса QRS. Так как петля Т в грудных отведениях ориентирована несколько кпереди от петли QRS, то зубцы Т в грудных отведениях по величине не всегда пропорциональны зубцам R.

Билет №14

1. Функциональная организация и функции вегетативной нервной системы (внс). Понятие о симпатическом и парасимпатическом отделах внс. Их особенности, отличия, влияние на деятельность органов.

Внутренняя среда организма, работа различных органов и систем, трофика тканей регулируются специальным отделом нервной системы, получившим название автономного (Дж. Ленгли). Этим названием, утвержденным международной анатомической номенклатурой, подчеркивается непроизвольный (не контролируемый сознанием) характер иннервации вегетативных органов организма. Наряду с этим термином часто применяется термин "вегетативная нервная система", что подчеркивает ее отношение к вегетативным процессам организма. Функции соматической (произвольной) нервной системы могут контролироваться сознанием.

Автономная и соматическая нервные системы действуют содружественно. Их нервные центры, особенно на уровне ствола мозга, тесно связаны друг с другом. Благодаря этим связям могут осуществляться сомато-висцеральные, висцеро-соматические, висцеро-висцеральные, висцеро-сенсорные и другие рефлексы. Однако, периферические отделы этих систем имеют много различий.

Автономную нервную систему подразделяют на симпатическую, парасимпатическую и метасимпатическую части (отделы).

Симпатический отдел автономной нервной системы

Центральная часть симпатического отдела представлена симпатическими ядрами боковых рогов спинного мозга от первых грудных до поясничных сегментов. Аксоны этих ядер выходят из спинного мозга в виде белых соединительных ветвей (преганглионарные волокна) и вступают в узлы симпатического ствола. Скорость проведения возбуждения в этих аксонах 1-20 м/с.

Периферическая часть образована чувствительными и эфферентными нейронами симпатических ганглиев. Околопозвоночные ганглии располагаются по обе стороны позвоночника от основания черепа до крестца в виде цепочек, которые называются правым и левым симпатическим стволом. Со спиномозговыми нервами узлы соединены белыми и серыми ветвями. По белой ветви в узел входит преганглионарное волокно, которое может переключаться на эффекторный ганглионарный нейрон. Часть постганглионарных волокон по серой соединительной ветви вновь возвращается в спиномозговой нерв и далее следует в его составе без перерыва к эффекторному органу. Другие волокна собираются в отдельные веточки (чревные нервы) и направляются к органам грудной и брюшной полости, таза или к предпозвоночным узлам, а затем к исполнительным органам. Постганглионарные волокна большей частью лишены миелиновой оболочки, поэтому имеют сероватую окраску. В ганглиях симпатического ствола прерывается только часть преганглионарных волокон, остальные же проходят их транзитом и переключаются на эффекторный нейрон в превертебральных ганглиях.

Наиболее крупными превертебральными ганглиями являются: солнечное сплетение (образованное чревным и краниальным брызжеечным узлами) и каудальный брыжеечный узел. От клеток этих узлов начинаются постганглионарные симпатические волокна, иннервирующие почти все органы брюшной полости. Они образуют многочисленные нервные стволы, которые, направляясь к органам брюшной полости, образуют ряд сплетений: желудочное, печеночное и др.

Эффекторами, которые снабжаются постганглионарными симпатическими волокнами, являются гладкие мышцы всех органов (сосудов, волосяных луковиц, зрачка, легких, органов пищеварения, выделения, потовые, сальные и пищеварительные железы), а также клетки печени и жировой клетчатки.

Симпатическая нервная система помимо эфферентных путей имеет собственные чувствительные пути. По локализации клеточных тел, ходу и длине отростков они делятся на две группы. Первая группа периферических афферентных нейронов включает клетки, тела которых локализуются в предпозвоночных симпатических ганглиях. Один из длинных отростков направляется на периферию, второй - в сторону спинного мозга, вступая в него в составе дорсальных корешков. Вторая группа характеризуется тем, что длинный отросток этих чувствительных клеток идет к рабочему органу, а короткие распределяются в самом ганглии, контактируя с вставочными нейронами и через них с эфферентными нейронами, образуя морфологическую основу для вегетативного периферического ганглионарного рефлекса.

Парасимпатический отдел автономной нервной системы

Этот отдел также включает в себя центральную и периферическую части (образования).

Центральные структуры расположены в среднем, продолговатом мозге и в крестцовом отделе спинного мозга. Спиномозговой компонент представлен ядром глазодвигательного нерва. К парасимпатическим ядрам продолговатого мозга относятся ядра VII, IX, Х пар черепномозговых нервов.

Преганглионарные волокна к структурам головы выходят из ствола мозга в составе трех пар черепно-мозговых нервов: III (глазодвигательного), VII (лицевого), IX (языкоглоточного) и заканчиваются на эффекторных нейронах ресничного, ушного, крылонебного, челюстного (подъязычного) узлов. От них постганглионарные волокна идут к органам головы.

К органам шеи, грудной и брюшной полостей Преганглионарные нейроны продолговатого мозга посылают свои волокна в составе блуждающего нерва (X пара).

Крестцовый отдел представлен центрами, расположенными в боковых рогах первых трех крестцовых сегментов спинного мозга. Отсюда Преганглионарные парасимпатические волокна в составе тазового нерва направляются к органам таза.

Постганглионарные парасимпатические волокна иннервируют глазные мышцы, слезные и слюнные железы, мускулатуру и железы пищеварительного тракта, трахею, гортань, легкие, предсердия, выделительные и половые органы. В отличие от симпатических постганглионарных волокон, они не иннервируют гладкие мышцы кровеносных сосудов, за исключением сосудов половых органов, коронарных артерий и, вероятно, артерий мозга.

Главным коллектором чувствительных путей парасимпатической нервной системы является блуждающий нерв. Важную физиологическую роль играет его чувствительная ветвь - депрессорный нерв, по которому проводится в ЦНС информация о величине давления крови в аорте, что характеризует функциональное состояние сердца и сосудов. Клеточные тела афферентных путей блуждающего нерва лежат, в основном, в яремном узле, их волокна входят в продолговатый мозг на уровне олив.

В синусный нерв, который является ветвью языкоглоточного нерва (IX пара), входит волокна, связанные с рецепторными структурами разной модальности. В этом комплексе особое значение принадлежит каротидному клубочку, расположенному у места ветвления общей сонной артерии.

2. Энергетический баланс организма. Методы определения энерготрат организма. Калорический коэффициент кислорода. Понятие об общем обмене и его составляющих (основной обмен, специфически динамическое действие пищи, рабочая прибавка).

Энергетический обмен присущ каждому живому организму. В вашем теле идет постоянный и непрерывный обмен веществ и энергии. При этом богатые питательными веществами продукты усваиваются и химически преобразуются, а конечные продукты их утилизации (низкоэнергетические) выделяются из организма. Высвобождающаяся энергия используется для поддержания жизнедеятельности клеток организма и для обеспечения его работы (сокращение мышц, работа сердца, функционирование внутренних органов).

Единицей измерения процесса энергетического обмена является калория. Одна калория равняется такому количеству энергии, которое необходимо для нагревания на 1 °С одного миллилитра воды. Энергетический баланс прихода и расхода веществ можно определить, вычислив соотношение между количеством энергии, которое поступило в организм с пищей, и тем количеством энергии, которое организм выделил во внешнюю среду.

Находящаяся в белках, жирах и углеводах пищи потенциальная химическая энергия в процессе обмена веществ превращается в различные формы химической и физической энергии. При мышечной деятельности она переходит в кинетическую, механическую энергию. Ничтожная ее часть превращается в электрическую энергию. Затем в конечном счете вся химическая энергия превращается в тепловую энергию, которая отдается внешней среде. Поэтому общий обмен веществ устанавливается по отдаче организмом тепла за определенный промежуток времени.

Количество теплоты, отдаваемое организмом, измеряется и джоулях (Дж)1, а определение количества теплоты называется калориметрией. Для измерения количества выделяемой теплоты человек или животное помещается в герметически закрытую камеру, не пропускающую тепло (прямая калориметрия). В настоящее время энергетические затраты определяются подсчетом энергии в усвоенных организмом пищевых веществах (непрямая калориметрия).

Так как пища в организме усваивается не полностью и часть энергии теряется с мочой и калом, то установлено, что при окислении в организме 1 г. Белка освобождается 17,16 кДж, 1 г. жира – 38,84 кДж и 1 г углевода – 17,16 кДж. Это калорические коэффициенты пищевых веществ, или количество теплоты, которое образуется при окислении их в организме. При расчетах необходимо учитывать коэффициенты усвоения пищевых веществ в организме.

Учитывая состав и вес принятой пищи, содержание в ней белков, жиров и углеводов и коэффициентов усвоения, можно рассчитать количество окисления в организме пищевых веществ, а следовательно, и энергетический баланс организма.

Энергетическая ценность пищевых продуктов (хлеба, овощей, мяса и т.д.) зависит от содержания в них пищевых веществ (белков, жиров, углеводов).

Прямая калориметрия основана на измерении количества тепла, непосредственно рассеянного организмом в теплоизолированной камере. При прямой калориметрии достигается высокая точность оценки энергозатрат организма, однако из-за громоздкости и сложности способ используется только для специальных целей.

Непрямая калориметрия основана на измерении количества потребленного организмом кислорода и последующем расчете энергозатрат с использованием данных о величинах дыхательного коэффициента (ДК) и КЭ02. Под дыхательным коэффициентом понимают отношение объема выделенного углекислого газа к объему поглощенного кислорода.

Основным источником энергии для осуществления в организме процессов жизнедеятельности является биологическое окисление питательных веществ. На это окисление расходуется кислород. Следовательно, измерив количество потребленного организмом кислорода за минуту, час, сутки, можно судить о величине энергозатрат организма за время измерения.

Между количеством потребленного за единицу времени организмом кислорода и количеством образовавшегося в нем за это же время тепла существует связь, выражающаяся через калорический эквивалент кислорода (КЭ02). Под КЭ02 понимают количество тепла, образующегося в организме при потреблении им 1 л кислорода.

Основной обмен - минимальный уровень энерготрат организма, необходимо го для поддержания только жизненно важных функций

Рабочая прибавка - энерготраты, которые организм осуществляет в связи с выполнением какой-либо деятельности (умственная, двигательная, трудовая и др.);

Специфически-динамическое действие пищи -энерготраты, которые организм осуществляет в связи с усилением обменных процессов после приема пищи.

3. Задача. У обследуемого в 4-хглавой мышце бедра обнаружено преобладание волокон II-А типа, утолщение волокон I типа и уменьшение количества волокон II-Б типа. О чем это может говорить? К выполнению какой работы будет более приспособлен данный человек?

Человек будет приспособлен к длительным высоким нагрузкам, соотношение мышц первого и второго типа закладывается генетически.

Билет №15

1. Учение И.П.Павлова об анализаторах. Биологическое значение и основные функции сенсорных систем. Классификация и механизм возбуждения рецепторов. Значение и функции проводникового отдела анализаторов. Значение и функции центрального отдела анализаторов.

Под анализаторами понимают совокупность образований, обеспечивающих восприятие энергии раздражителя, трансформацию ее в специфические процессы возбуждения, проведение этого возбуждения в структуры ЦНС и к клеткам коры, анализ и синтез специфическими зонами коры этого возбуждения с последующим формированием ощущения.

Понятие об анализаторах введено в физиологию И. П. Павловым в связи с учением о высшей нервной деятельности. Каждый анализатор состоит из трех отделов:

• Периферический или рецепторный отдел, который осуществляет восприятие энергии раздражителя и трансформацию ее в специфический процесс возбуждения.

• Проводниковый отдел, представленный афферентными нервами и подкорковыми центрами, он осуществляет передачу возникшего возбуждения в кору головного мозга.

• Центральный или корковый отдел анализатора, представленный соответствующими зонами коры головного мозга, где осуществляется высший анализ и синтез возбуждений и формирование соответствующего ощущения.

Роль анализаторов при формировании приспособительных реакций чрезвычайно велика и многообразна. Согласно концепции функциональной системы П. К. Анохина формирование любой приспособительной реакции осуществляется в несколько этапов. Анализаторы принимают непосредственное участие в формировании всех этапов функциональной системы. Они являются поставщиками афферентных посылок определенной модальности и различного функционального назначения, причем, одна и та же афферентация может быть обстановочной, пусковой, обратной и ориентировочной в зависимости от этапа формирования приспособительной деятельности.

Рецепторы представляют собой конечные специализированные образования, которые предназначены для восприятия энергии раздражителя и трансформации ее в специфическую активность нервной клетки.

В основу классификации рецепторов положено несколько критериев.

• Психофизиологический характер ощущения: тепловые, холодовые, болевые и др.

• Природа адекватного раздражителя: механо-, термо-, хемо-, фото-, баро-, осмбрецепторы и др.

• Среда, в которой рецептор воспринимает раздражитель: экстеро-, интерорецепторы.

• Отношение к одной или нескольким модальностям: моно- и полимодальные (мономодальные преобразуют в нервный импульс только один вид раздражителя — световой, температурный и т. д., полимодальные могут несколько раздражителей преобразовать в нервный импульс — механический и температурный, механический и химический и т. д.).

• Способность воспринимать раздражитель, находящийся на расстоянии от рецептора или при непосредственном контакте с ним:

контактные и дистантные.

• Уровень чувствительности (порог раздражения): низкопороговые (механорецепторы) и высокопороговые (ноцицепторы).

• Скорость адаптации: быстроадаптирующиеся, (тактильные), медленноадаптирующиеся (болевые) и неадаптирующиеся (вестибулярные рецепторы и проприорецепторы).

• Отношение к различным моментам действия раздражителя: при включении раздражителя, при его выключении, на протяжении всего времени действия раздражителя.

• Морфофункциональная организация и механизм возникновения возбуждения: первичночувствующие и вторичночувствующие.

В первичночувствующих рецепторах стимул действует на воспринимающий субстрат, заложенный в самом сенсорном нейроне, который при этом возбуждается непосредственно (первично) раздражителем. К первичночувствующим рецепторам относятся: обонятельные, тактильные рецепторы и мышечные веретена.

К вторичночувствующим относятся те рецепторы, у которых между действующим стимулом и сенсорным нейроном располагаются дополнительные рецептирующие клетки, при этом сенсорный нейрон возбуждается не непосредственно стимулом, а опосредовано (вторично) — потенциалом рецептирующей клетки. К вторичночувствующим рецепторам относятся: рецепторы слуха, зрения, вкуса, вестибулярные рецепторы.

Для первичночувствующих рецепторов:

• I этап — специфическое взаимодействие раздражителя с мембраной рецептора;

• II этап — возникновение рецепторного потенциала в месте взаимодействия раздражителя с рецептором в результате изменения проницаемости мембраны для ионов натрия (или кальция);

• III этап — электротоническое распространение рецепторного потенциала к аксону сенсорного нейрона (пассивное распространение рецепторного потенциала вдоль нервного волокна называется электротоническим);

• IV этап — генерация потенциала действия;

• V этап — проведение потенциала действия по нервному волокну в ортодромном направлении.

Для вторичночувствующих рецепторов:

• I-III этапы совпадают с такими же этапами первичночувствующих рецепторов, но протекают они в специализированной рецептирующей клетке и заканчиваются на ее пресинаптической мембране;

• IV этап — выделение медиатора пресинаптическими структурами рецептирующей клетки;

• V этап — возникновение генераторного потенциала на постсинаптической мембране нервного волокна;

• VI этап — электротоническое распространение генераторного потенциала по нервному волокну;

• VII этап — генерация потенциала действия электрогенными участками нервного волокна;

• VIII этап — проведение потенциала действия по нервному волокну в ортодромном направлении.

Свойства проводникового отдела анализаторов

Этот отдел анализаторов представлен афферентными путями и подкорковыми центрами. Основными функциями проводникового отдела являются: анализ и передача информации, осуществление рефлексов и межанализаторного взаимодействия. Эти функции обеспечиваются свойствами проводникового отдела анализаторов, которые выражаются в следующем.

1. От каждого специализированного образования (рецептора), идет строго локализованный специфический сенсорный путь. Эти пути как правило, передают сигналы от рецепторов одного типа.

2. От каждого специфического сенсорного пути отходят коллатерали к ретикулярной формации, в результате чего она является структурой конвергенции различных специфических путей и формирования мультимодальных или неспецифических путей, кроме того, ретикулярная формация является местом межанализаторного взаимодействия.

3. Имеет место многоканальность проведения возбуждения от рецепторов к коре (специфические и неспецифичекие пути), что обеспечивает надежность передачи информации.

4. При передаче возбуждения происходит многократное переключение возбуждения на различных уровнях ЦНС. Выделяют три основных переключающих уровня:

• спинальный или стволовой (продолговатый мозг);

• зрительный бугор;

• соответствующая проекционная зона коры головного мозга.

Свойства коркового отдела анализаторов

1. Каждая сенсорная система (каждый анализатор) имеет проекцию в кору больших полушарий. Корковый отдел анализаторов имеет центральную часть и окружающую ее ассоциативную зону (по представлению И. П. Павлова — “ядро” и рассеянные элементы). Центральная часть коркового отдела анализатора состоит из высокодифференцированных в функциональном отношении нейронов, которые осуществляют высший анализ и синтез информации, поступающей к ним. Ассоциативные корковые зоны представлены менее дифференцированными нейронами, способных к выполнению простейших функций. Синтез и анализ афферентных импульсов этими клетками осуществляется в элементарной, примитивной форме.

2. Одной из общих черт организации сенсорных систем является принцип двойственной проекции их в кору больших полушарий. Этот принцип тесно связан с многоканальностью проводящих путей и выражается в осуществлении двух различных типов корковых проекций, которые можно разделить на первичные и вторичные проекции. Первичные и вторичные проекционные зоны окружены ассоциативными корковыми зонами той же сенсорной системы. Примером двойственной проекции в коре головного мозга может служить представительство вкусового анализатора. Его первичная корковая проекция представлена, по-видимому, орбитальной областью коры, так как именно здесь при раздражении рецепторов языка вызванные ответы возникают с самым коротким латентным периодом и имеют самую высокую амплитуду. Вторичной проекционной областью коры вкусового анализатора является соматосенсорная область. Здесь вызванные ответы возникают значительно позже, чем в орбитальной области, и амплитуда их меньше.

3. Взаимодействие анализаторов на корковом уровне осуществляется за счет ассоциативных корковых зон и за счет наличия полимодальных нейронов.