Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Материалы для подготовки к экзамену по электротехнике.doc
Скачиваний:
890
Добавлен:
20.05.2014
Размер:
2.51 Mб
Скачать

25. Режимы работы и кпд трансформатора. Опыты холостого хода и короткого замыкания. Внешняя характеристика трансформатора. Режимы работы трансформатора

Для характеристики степени загруженности трансформатора по отношению к его номинальной (расчетной, паспортной) мощности, вводится коэффициент загрузки β.

, где P2 – рабочая (нагрузочная) мощность трансформатора.

В зависимости от величины коэффициента загрузки различают:

1) β = 1 => P2 = P2 ном – номинальный режим.

Это основной (расчетный) режим работы трансформатора с номинальными параметрами (U ном , I ном , P ном), при котором трансформатор или другое электротехническое устройство может работать с высокими технико-экономическими показателями (КПД, cos φ) в допустимом тепловом режиме (без перегрева) в течение длительного времени, что обеспечивает длительный срок службы электрооборудования порядка 10 -15 и более лет.

2) β = 0 => Р2 = 0.

Режим холостого хода (или подключение к нагрузке с очень большим сопротивлением). I 20 = 0, обмотка разомкнута, Z н = ∞.

Передачи ЭЭ в этом случае не происходит. Режим совершенно бесполезный, т.к. ТР потребляет реактивную мощность и коэффициент мощности cos φ потребителя снижается.

3) β < 1. Р2 < Р 2 ном – режим недогрузки. Не рекомендуется, т.к. снижаются технико-экономические показатели, КПД и cos φ.

4) β > 1. Р2 > Р 2 ном – режим перегрузки. Категорически не допускается, т.к. приводит к резкому перегреву электротехнического устройства и резкому сокращению срока службы. Снижаются технико-экономические показатели.

5) Аварийный режим - режим короткого замыкания.

U1 = U1 ном; Z н = 0 - т.е. обмотка W2 замкнута «сама на себя». При этом токи в обмотке сильно возрастают, примерно в 10-15 раз, отсюда резкий перегрев обмотки и даже механические разрушения трансформатора.

Кпд трансформатора. Потери мощности и кпд трансформатора

При работе трансформатора происходит передача ЭЭ из обмотки W1 в W2 , при этом часть подведенной к трансформатору энергии теряется в виде тепловых потерь в стали (сердечнике) и в меди, т.е. в обмотках.

W1    ФМС W2

P1 ~> ~ Ф 0 ~> P2

 ΔP + ΔPс + ΔP = ΔPтр

Потери в трансформаторе в номинальном режиме очень малы, ΔPтр ~ 1-3%, т.е. ηном = (97-99)%. Обычно трансформатор работает большую часть времени в режиме недогрузки, т.е. β = P2 / P2ном ≈ 0,5-0,7. Такой режим эксплуатации выбирается для того, чтобы при неожиданном подключении мощного потребителя трансформатор не оказался в режиме сильной перегрузки, что может привести к отключению трансформатора и возникновению аварийного режима в питающей сети. Поэтому проектирование и расчет трансформаторов выполняют таким образом, чтобы η макс приходилось на режим β = 0,5-0,7.

а) Прямой метод определения КПД

- по показаниям измерительных приборов.

P2 – мощность нагрузки, подключённой к трансформатору;

P1 – мощность, подведенная к трансформатору;

б) Косвенный метод определения КПД

Данный метод позволяет определить КПД трансформатора по данным опытов холостого хода и короткого замыкания с учетом коэффициента загрузки β.

Из паспорта трансформатора находят полную мощность Sном ~> P2 = βP2ном = β Sном cos φнагр.

ΔPст = Р10 = const; - постоянны для всех режимов и определяются из опыта хх.

- из опыта короткого замыкания.

Отсюда получаем для любого режима:

Подставляя конкретное значение β, по данной формуле можно рассчитать получаемое при перегрузке η тр.

Как проводится опыт холостого хода и что из него определяется?

Режим работы трансформатора, где не происходит передачи электрической энергии, называется холостым ходом трансформатора. В этом режиме к первичной обмотке подведено переменное номинальное напряжение U1ном, а вторичная обмотка разомкнута, т.е. нагрузка к вторичной обмотке трансформатора не подключена, и ток в ней равен нулю I20 = 0. Поскольку передачи электрической энергии в этом случае не происходит, то ток в первичной обмотке - ток холостого хода трансформатора I 10 оказывается небольшим, он составляет где-то 3-5-10% от номинального: I10 = (3 - 5 - 10 %) I1ном. Трансформатор в режиме холостого хода можно рассматривать как катушку с ферромагнитным сердечником, включенную в цепь переменного тока.

Ток холостого хода является важной характеристикой трансформатора, по его величине можно судить о потреблении трансформатором реактивной энергии на намагничивание.

Также в режиме холостого хода определяют коэффициент трансформации: K=E1E2=W1W2. Во вторичной обмотке Е20 = U20, а в первичной обмотке падение напряжения мало и можно принять Е1 = U1ном.

Тогда коэффициент трансформации можно определять как отношение напряжений в опыте холостого хода : K=U1номU20 .

Мощность Р, потребляемая трансформатором в опыте холостого хода, расходуется на нагрев первичной обмотки - потери в меди первичной обмотки ∆Р и на нагрев сердечника - потери в стали ∆Р с.

Джоулевы потери в меди вторичной обмотки отсутствуют, т.к. I20≈ 0 , а в первичной обмотке ∆Р = I102∙R они очень малы по сравнению с номинальными, т. к I 10 = (3 - 5 - 10 %) I 1 ном. Поэтому мощность Р , потребляемая трансформатором в опыте холостого хода, расходуется лишь на нагрев сердечника - на потери в стали .

Потери в ферромагнитном сердечнике ∆Р с ~ Φ². ИЗ формулы E1 = 4,44 f W1 Ф мax следует, что рабочий магнитный поток трансформатора Φ прямо пропорционально связан с величиной первичной ЭДС : Φ ~ Е1 . Т.к. падение напряжения в первичной обмотке трансформатора очень мало - не более 3 - 5 % , поэтому можно принять, что ЭДС первичной обмотки практически равна приложенному напряжению Е1 = U1 . Значит, можно считать, что для всех режимов рабочий магнитный поток трансформатора пропорционален приложенному напряжению Φ ~ U1.

Т.к. ∆Р с ~ Φ², значит ∆Рс ~ U1².

Т.к. в опыте холостого хода приложенное к первичной обмотке напряжение является номинальным U1 = U1ном, то потери мощности в сердечнике трансформатора в опыте холостого равны номинальным потерям мощности в сердечнике - следовательно, потребляемая трансформатором мощность в опыте холостого хода равна номинальным потерям в сердечнике трансформатора Р = ∆Рсном.

Как проводится опыт короткого замыкания и что определяется из этого опыта?

Режимом короткого замыкания называется режим, возникающий при соединении между собой без какого-либо сопротивления зажимов источника или иных элементов электрической цепи, между которыми имеется напряжение.

Режим короткого замыкания трансформатора - это нерегламентированный режим, который возникает в аварийных ситуациях, когда при работе трансформатора под номинальным напряжением U1 = U1 ном сопротивление нагрузки становится равным нулю Z н = 0 - т.е. вторичная обмотка W2 замкнута накоротко - «сама на себя».

В опыте короткого замыкания при помощи ручки автотрансформатора плавно повышают входное напряжение, пока ток в первичной обмотке не достигнет номинального значения. Напряжение, при котором в опыте короткого замыкания устанавливаются номинальные токи, называется напряжением короткого замыкания трансформатора U кз и обычно составляет несколько процентов от номинального: Uкз=(5-7 %)U1ном.

По данным опыта короткого замыкания можно определить напряжение короткого замыкания трансформатора U кз, его всегда указывают на щитке трансформатора, и оно является одним из паспортных параметров. Напряжение КЗ определяет нормальную работу трансформаторов при их параллельном включении на общую нагрузку, т.к. определяет величину падения напряжения в трансформаторе при нагрузке в номинальном режиме ΔU ном = Uкз. В опыте короткого замыкания напряжение на выходе трансформатора равно нулю U2=0, поэтому приложенное в этом опыте к первичной обмотке напряжение Uкз уравновешивается падением напряжения в трансформаторе U кз = ΔU . Поскольку в опыте короткого замыкания в обмотках трансформатора протекают номинальные токи I1ном и I2ном, то и падение напряжения в трансформаторе в этом опыте также соответствует номинальному U кз = ΔU ном. Падение напряжения в трансформаторе при нагрузке в номинальном режиме, определяемое из опыта короткого замыкания, сравнительно невелико и составляет 5 - 7 % .

Также из опыта КЗ можно определить номинальные потери в меди - ∆Р м ном. Потери в стали трансформатора ∆Рс пропорциональны квадрату приложенного к первичной обмотке напряжения ∆Рс ~ U1² , ими в опыте короткого замыкания можно пренебречь, т.к. в этом опыте напряжение на первичной обмотке очень мало по сравнению с номинальным Uкз = ( 5 - 7 % ) U1ном . Следовательно, мощность, потребляемая трансформатором в опыте короткого замыкания, расходуется лишь на тепловые потери в обмотках - потери в меди Р кз = ∆Р м. Т.к. токи в обмотках трансформатора в опыте короткого замыкания являются номинальными, то потери в меди в этом опыте так же являются номинальными Р кз = ∆Р м ном

Соседние файлы в предмете Электротехника