Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Материалы для подготовки к экзамену по электротехнике.doc
Скачиваний:
891
Добавлен:
20.05.2014
Размер:
2.51 Mб
Скачать

Погрешности электрических измерений

1. Абсолютная погрешность ΔА – это разность между измеренным значением электрической величины АИ и ее действительным значением АД : ΔА = АИ – АД [А; В; Вт]

Действительное значение измеряемой электрической величины (тока, напряжения, мощности) всегда неизвестно, поэтому его можно определить только приблизительно:

1.1. В случае единичного измерения - по показанию АЭ эталонного прибора , т.е. принять АД = АЭ .

1.2. В случае нескольких измерений – как среднее арифметическое значение из результатов этих измерений АД = А СР .

1.3. В случае единичного измерения и при отсутствии эталонного ЭИП абсолютную погрешность измерения можно вычислить по классу точности (Кл), указанному на шкале рабочего ЭИП, и известному пределу измерения AH : ΔА = (AH * Кл ) / 100 [А; В; Вт].

2. Относительная погрешность δ - это выраженное в процентах отношение абсолютной погрешности к действительному значению измеряемой электрической величины :

δ = (ΔА / АД ) * 100 [%] .

Поскольку АД = АИ + ΔА , то для относительной погрешности измерения можно записать: δ = (AH * Кл ) / АИ + ΔА = Кл / [(АИ / АН ) + (Кл /100)].

При использовании ЭИП даже среднего класса точности 0,5 - 1,0 и при условии, что измеряемая величина АИ близка к пределу измерения АН величиной (Кл /100) можно пренебречь и тогда для расчёта относительной погрешности измерения можно использовать формулу: δ = (Кл * AH ) / АИ [%].

Другими словами можно считать, что при правильном выполнении условий проведения измерений на ЭИП различие между измеренным и действительным значениями электрической величины достаточно мало и для расчёта относительной погрешности измерения можно использовать приведённую выше формулу: δ = (AH * Кл ) / АИ [%] .

3. Приведенная погрешность γ – это отношение абсолютной погрешности к номинальному значению (пределу измерения) ЭИП, выраженное в процентах:

γ = (ΔА / AH ) *100 [%] .

Особенности работы с многопредельными приборами.

В общем случае для обеспечения более высокой точности измерений из нескольких имеющихся ЭИП (или из пределов многопредельного прибора) следует выбрать прибор с минимальной относительной погрешностью d по условию:

d = Кл * АН / АИ = min , где Кл - класс точности измерительного прибора ( % ), АИ - заданное (выбранное или предполагаемое, оценочное) значение измеряемой величины.

Из этого условия следует, что с целью снижения погрешности измерений в случае ЭИП с одинаковым классом точности выбирают прибор, предел измерения которого АН является большим ближайшим значением к измеряемой величине АИ .

Другими словами выбирают прибор с пределом измерения АН ближайшим большим к измеряемой величине АИ (заданной или предполагаемой) т.е. так, чтобы показания прибора находились в конце шкалы, где относительная погрешность измерения d снижается и приближается к классу точности ЭИП.

Из формулы d = Кл * АН / АИ следует, что при АИ ≈ АН d ≈ Кл = min .

6. Переменный электрический ток. Способы представления синусоидальных величин. Основные характеристики переменного тока. Период, частота, начальная фаза, сдвиг фаз, действующее значение переменного тока.

Переменный электрический ток - это электрический ток, величина и направление которого во времени изменяется по синусоидальному закону.

Широкое применение переменного тока в различных областях техники объясняется легкостью его получения и преобразования, а также простотой устройства генераторов и двигателей переменного тока, надёжностью их работы и удобством в эксплуатации.

 В промышленных масштабах переменный ток получают централизованно на электростанциях с помощью электромашинных устройств - синхронных генераторов. Переменный ток и его характеристики (параметры) могут быть представлены одним из следующих способов:

 1. Алгебраический: i = Im Sin( ωt +Ψi ); u = Um Sin( ωt +Ψu )

 2. В виде волновой диаграммы (осциллограммы):

 3. В комплексной форме:

Ī m = I m e j ( ωt+Ψ i ) ; Ī m = I m ωt+Ψ i ; Ī m = I m Ψ i

Ūm = Um e j ( ωt+Ψ u ) ; Ūm = Um ωt+Ψu ; Ūm = Um Ψ u

 

4. В виде векторной диаграммы:

Соседние файлы в предмете Электротехника