Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Ekzamen_TOE.doc
Скачиваний:
42
Добавлен:
30.03.2015
Размер:
741.89 Кб
Скачать

11.Проводники в электростатическом поле

Электростатическое поле - эл.поле, образованное неподвижными электрическими зарядами. Свободные электроны - электроны, способные свободно перемещаться внутри проводника ( в основном в металлах) под действием эл. поля; Свободные электроны возникают при образовании металлов: электроны с внешних оболочек атомов утрачивают связи с ядрами и начинают принадлежать всему проводнику;

- участвуют в тепловом движении и могут свободно перемещаться по всему проводнику. Электростатическое поле внутри проводника - внутри проводника электростатического поля нет ( Е = 0 ), что справедливо для заряженного проводника и для незаряженного проводника, внесенного во внешнее электростатическое поле.  Почему? - т.к. существует явление электростатической индукции, т.е.  явление разделения зарядов в проводнике, внесенном в электростатическое поле ( Евнешнее) с образованием нового электростатического поля ( Евнутр.) внутри проводника.

Внутри проводника оба поля ( Евнешн. и Евнутр.) компенсируют друг друга, тогда внутри проводника Е = 0. Заряды можно разделить:

Электростатическая защита

- металл. экран, внутри которого Е = 0, т.к. весь заряд будет сосредоточен на поверхности проводника. Электрический заряд проводников - весь статический заряд проводника расположен на его поверхности, внутри проводника q = 0; - справедливо для заряженных и незаряженных проводников в эл.поле. Линии напряженности эл.поля в любой точке поверхности проводника перпендикулярны этой поверхности.

12.Закон Ома в дифференциальной форме.

Закон Ома в интегральной форме для однородного участка цепи (не содержащего ЭДС)

 

(7.6.1)

 

Для однородного линейного проводника выразим R через ρ:

 

,

,

(7.6.3)

 

      это запись закона Ома в дифференциальной форме.

Здесь  – удельная электропроводность.

Размерность σ – [].

13.Граничные условия на поверхности раздела двух проводящих тел

Под граничными условиями понимают условия, которым подчиняется поле на границах раздела сред с различными электрическими свойствами.

При интегрировании уравнения Лапласа (или Пуассона) в решение входят постоянные интегрирования. Их определяют из граничных условий.

В проводящем теле, находящемся в магнитном поле, вследствие явления электростатической индукции происходит разделение зарядов (рис. 15.5).

Рис. 15.5. разделение зарядов в проводящем теле

Все точки тела будут иметь один и тот же потенциал (иначе появилось бы упорядоченное движение зарядов). Поверхность тела эквипотенциальна. Вектор напряженности внешнего поля в любой точке поверхности подходит к ней под прямым углом. Внутри проводящего тела напряженность равна нулю, так как внешнее поле компенсируется полем зарядов, расположившихся на поверхности тела.

На границе раздела проводящего тела и диэлектрика при отсутствии тока по проводящему телу выполняются два условия:

1. Отсутствует тангенциальная (касательная к поверхности) составляющая напряженности поля

(15.21)

2. Вектор электрического смещения  в любой точке диэлектрика, непосредственно примыкающей к поверхности проводящего тела, численно равен плотности заряда σ на поверхности проводящего тела в этой точке:

(15.22)

На границе раздела двух диэлектриков с различными диэлектрическими проницаемостями выполняются следующие условия:

1. Тангенциальные составляющие напряженности поля равны:

Et1 = Et2. (15.23)

2. Нормальные составляющие электрической индукции равны:

Dn1 = Dn2. (15.24)

Уравнения Лапласа и Пуассона являются уравнениями в частных производных, которые в общем случае имеют множество линейно независимых друг от друга решений. Выбор единственного решения, удовлетворяющего конкретной задаче, производят с помощью граничных условий.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]