Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Физика для заочников.сокр.вар.doc
Скачиваний:
163
Добавлен:
30.03.2015
Размер:
5.28 Mб
Скачать

3) Свет естественный и поляризованный.

Рассмотрим электромагнитную волну, излучаемую одним атомом. Для простоты, возьмём колеблющийся электрон. Как известно из школьного курса физики, электромагнитная волна состоит из двух компонент: электрической составляющей (вектор Е) и магнитной составляющей (вектор В). При этом будет наблюдаться следующая картина. ВекторыЕиВколеблются в двух взаимно перпендикулярных плоскостях. Графической зависимостью от времени это будет изображаться двумя синусоидами: синусоида вектораЕизобразится на вертикальной плоскости, совпадающей с направлением, в котором колеблется электрон, а синусоида вектораВ изобразится на горизонтальной плоскости. При этом, обе синусоиды находятся в одной фазе.

Для многих физических процессов, для фотохимических реакций, а также для зрительных ощущений решающую роль играет вектор электрического поля Е. ВекторВиграет незначительную роль. Следовательно, в электромагнитной волне будем рассматривать только векторЕ и его плоскость. Эту плоскость принято считатьплоскостью поляризации.

Как известно из школьного курса физики, свет представляет собой электромагнитные волны с длиной волны от 0,75 до 0,35 мкм, вызывающие зрительные ощущения.

Таким образом мы пришли к выводу, что свет представляет собой поперечные волны, обладающие свойством поляризации

Как было сказано выше, отдельный атом излучает поляризованный свет, причём, плоскость его поляризации занимает в пространстве строго определённое положение. Поэтому свет, излучённый отдельным атомом, является плоскополяризованным.

В естественных источниках света свет излучается множеством атомов и каждый атом излучает в своей плоскости и в результате свет, излучённый большим количеством атомов имеет множество плоскостей поляризации, ориентированных во всевозможных направлениях. Такой свет поляризованным не является. Поэтому, естественный свет является неполяризованным.

Для изображения на чертеже поляризованного и неполяризованного света, используют так называемый модельный луч. На рисунке показаны четыре типа модельного луча:

Следует отметить, что глаз человека не способен отличить поляризованный свет от неполяризованного. А в ряде случаев необходимо знать, поляризован свет или нет и если поляризован – то в какой плоскости. Чтобы это узнать, используются специальные технические приёмы, о которых будет сказано ниже.

4) Поляризатор и анализатор. Закон Малюса.

Как получить поляризованный свет? Как известно, одиночный атом излучает поляризованный свет. Но этот свет очень слабый и непригоден для практического использования. Для этого нужен свет, излучаемый многими атомами. Но на практике невозможно в естественном источнике света заставить все атомы излучать свет в одной и той же плоскости поляризации. В данной ситуации существует единственный выход: пропустить свет через такое устройство, при прохождении через которое все плоскости поляризации будут отсечены кроме одной, которая совпадает с плоскостью пропускания данного устройства.

Такое устройство называется поляризатором:

Как известно, глаз не может различить, где поляризован свет, а где нет. Как же на практике отличить поляризованный свет от неполяризованного?

Для этого нужно взять ещё одно такое же устройство и поставить его на пути поляризованного луча света. Если плоскость пропускания совпадает с плоскостью поляризации луча света, то луч пройдёт весь, практически без потерь. Но если плоскость пропускания будет перпендикулярна плоскости поляризации, то луч света вообще не пройдёт. Такое устройство называется анализатором. С помощью анализатора можно узнать, поляризован свет или нет. Нужно только пропустить луч света через анализатор и при этом вращать его вокруг оси, совпадающей с падающим лучом. Если луч поляризован, то его интенсивность будет на выходе изменяться от нуля до максимума в зависимости от угла поворота. Если падающий луч не является поляризованным, то при вращении анализатора интенсивность вышедшего луча изменяться не будет.

Поляризатор и анализатор устроены совершенно одинаково, различаются только функцией и их можно менять местами.

Интенсивность выходящего из анализатора света подчиняется закону Малюса: I = I0 cos2ЗдесьIинтенсивность поляризованного света, т.е. света, проходящего между поляризатором и анализатором;I0 - интенсивность света, вышедшего из анализатора;угол между плоскостями пропускания поляризатора и анализатора.

  1. Поляризация при отражении и преломлении. Закон Брюстера.

Существует ещё один способ поляризации света. Он заключается в том, что если естественный свет падает на границу двух полированных диэлектриков под определённым углом и при этом тангенс угла падения численно равен относительному показателю преломления двух сред, то отражённый луч полностью будет поляризован. Преломлённый же луч будет поляризован частично и при этом преимущественное направление плоскости поляризации преломлённого луча будет перпендикулярно плоскости поляризации отражённого луча. Вектор поляризации отражённого луча расположен параллельно отражающей поверхности. При этом, отражённый и преломлённый лучи будут взаимно перпендикулярны:

При этом соблюдается соотношение:

tg = n

Здесь - угол Брюстера;n- относительный показатель преломления.

Это – закон Брюстера.

Следует учесть, что если свет на отражающую поверхность падает не под углом Брюстера, то отражённый луч будет поляризован частично.