Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

Allen and Holberg - CMOS Analog Circuit Design

.pdf
Скачиваний:
44
Добавлен:
05.06.2015
Размер:
2.21 Mб
Скачать

Allen and Holberg - CMOS Analog Circuit Design

Page V.1-17

POSSIBLE SOLUTIONS TO CLOCK FEEDTHROUGH

1.) Dummy transistor (MD) -

φ

φ

 

W1

W

W

L1

D =

1

L

2L

 

D

1

M1

MD

 

VSS

V

 

 

SS

 

Complete cancellation is difficult.

Requires a complementary clock.

2.) Limit the clock swing when one terminal of the switch is at a defined potential.

 

vG

 

0V

 

C

+

+

vin > 0

vout

-

VSS

-

vG

3VT

2VT

VT

t

ON

OFF

ON

Allen and Holberg - CMOS Analog Circuit Design

Page V.1-18

CMOS SWITCHES

"Transmission Gate"

φ

VSS

A B

VDD

φ

Advantages -

1.) Larger dynamic range.

2.) Lower ON resistance. Disadvantages -

1.) Requires complementary clock.

2.) Requires more area.

Allen and Holberg - CMOS Analog Circuit Design

Page V.1-19

DYNAMIC RANGE LIMITATIONS OF SWITCHES

Must have sufficient vGS to give a sufficiently low on resistance

Example:

VDD

Switch On Resistance

 

50µ

 

2µ

 

 

 

 

 

 

A

+

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

VDD

VAB

50µ

-

2µ

 

3kΩ

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.5kΩ

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

V

 

 

 

 

= 4V

 

 

 

 

 

 

 

 

 

 

 

 

DD

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2kΩ

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

V

 

 

= 4.5V

 

 

DD

 

1.5kΩ

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

V

 

 

 

= 5V

 

DD

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1kΩ

0.5kΩ

0kΩ

0V

1V

2V

VAB

B

1 A

3V

4V

5V

SPICE File:

Simulation of the resistance of a CMOS transmission switch M1 1 3 2 0 MNMOS L=2U W=50U

M2 1 0 2 3 MPMOS L=2U W=50U

.MODEL MNMOS NMOS VTO=0.75, KP=25U,LAMBDA=0.01, GAMMA=0.5, PHI=0.5

.MODEL MPMOS PMOS VTO=-0.75, KP=10U,LAMBDA=0.01, GAMMA=0.5, PHI=0.5 VDD 3 0

VAB 1 0

IA 2 0 DC 1U

.DC VAB 0 5 0.02 VDD 4 5 0.5

.PRINT DC V(1,2)

.END

Allen and Holberg - CMOS Analog Circuit Design

Page V.1-20

“Brooklyn Bridge” Effect

If N-channel and P-channel devices are “resistively” scaled (i.e., sized to have the same conductance at equivalent terminal conditions) the resistance versus voltage (common mode) will appear as shown below.

 

Nch on

Nch on; Pch on

 

Pch on

 

 

 

 

 

Pch off

 

 

 

Nch off

280

 

 

 

 

 

270

 

 

 

 

5v

 

 

 

 

 

260

 

 

 

 

 

R 250

 

 

 

 

I d

 

 

 

 

 

5v

240

 

 

 

 

 

230

 

 

 

 

V

220

 

 

 

 

0.1

210

 

 

 

 

 

0

1

2

3

4

5

V

Allen and Holberg - CMOS Analog Circuit Design

Page V.1-21

VOLTAGE DOUBLER USE TO PROVIDE GATE OVERDRIVE

Example

VDD

M1

 

 

 

φA

 

 

 

 

φA

CPump

 

 

 

 

 

 

M6

 

 

 

 

 

 

M4

 

+

 

 

M7

M8

 

 

φA

 

 

 

 

M2

φB

 

 

VDBL

 

 

CHold

 

M3

 

 

 

φB

φA

φB

 

 

 

 

M5

 

-

VSS

φA

φB

Operation:

1.φA low, φB high - CPump is charged to VDD-VSS.

2.φA high, φB low - CPump transfers negative charge to CHold

V

DBL

-0.5 V

DD

- V

 

 

 

 

S S

3.Eventually, VDBL approaches the voltage of -VDD + VSS. If VDD = - VSS, then VDBL - 2VDD.

Allen and Holberg - CMOS Analog Circuit Design

Page V.1-22

SUMMARY OF MOS SWITCHES

Symmetrical switching characteristics

High OFF resistance

Moderate ON resistance (OK for most applications)

Clock feedthrough is proportional to size of switch (W) and inversely proportional to switching capacitors.

Complementary switches help increase dynamic range.

As power supply reduces, switches become more difficult to fully turn on.

Switches contribute a kT/C noise which folds back into the baseband.

Allen and Holberg - CMOS Analog Circuit Design

Page V.2-1

V.2 - DIODES AND ACTIVE RESISTORS

MOS ACTIVE RESISTORS

Realizations

+

v

i -

I-V Characteristics -

i

AC

DC

v

Small signal

 

 

i

 

G

 

 

 

+

 

 

 

v

gm v

gmbs vbs

rds

 

S -

 

 

 

 

+

 

When the drain is connected to the

i

gate, the transistor is always saturated.

 

 

 

 

v

 

vDS vGS - VT

 

 

vD - vS vG - vS - VT

 

 

 

 

- vDG -VT where VT > 0

 

 

 

Large Signal

 

i

=

i

D

=

( K'W ) [ v

GS

- V

T

]2

 

β

 

 

2L

 

 

 

=

( v

GS

- V

T

) 2 ,

ignore

λ

 

2

 

 

 

 

 

 

 

 

 

or

 

 

 

 

 

 

 

 

 

 

 

 

v = vDS = vGS = VT +

 

2iD

 

 

 

β

D

S

If VBS = 0 ,

then ROUT =

v

=

1

1

If VBS 0?

 

i

 

gM + gD S

 

gM

 

 

 

 

 

 

Note:

Generally, gm 10 gmbs 100 gds

 

Allen and Holberg - CMOS Analog Circuit Design

Page V.2-2

VOLTAGE DIVISION USING ACTIVE RESISTORS

Objective : Derive a voltage Vout from VSS and VDD

VDD

M2

Vout

M1

VSS

Equating

iD1 to iD2 results in :

 

 

 

 

 

 

 

 

 

 

v

 

 

=

 

β 2

v

 

 

- V

 

 

+ V

 

 

 

 

 

DS1

 

 

 

β1

DS2

 

T 2

 

T1

where

 

vGS1 = vDS1

 

and

 

vGS2 = vDS2

 

 

 

 

 

 

Example :

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

If

VDD = -VSS = 5 volts,

Vout = 1 volt, and ID1 = ID2 = 50 µamps,

then use the model parameters of Table 3.1-2 to find W/L ratios.

i

D1

=

β

( v

GS

- V

T

) 2

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

β1

=

 

4.0 µA/V2

 

 

β2

=

11.1 µA/V2

 

K'n =

17

µA/V2

 

 

K'p =

8 µA/V2

 

then ( W/L )1

=

1

 

 

and

( W/L )2

=

1.34

 

4.25

 

 

Allen and Holberg - CMOS Analog Circuit Design

Page V.2-3

EXTENDED DYNAMIC RANGE OF ACTIVE RESISTORS

Concept:

 

 

I

 

I

-

 

+

 

I1

 

 

VC

I2

 

 

+

M1

vDS M2

+

R

 

 

 

 

VC

 

 

 

-

-

 

Consider :

Assume both devices are non-saturated

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

v DS

 

 

 

 

 

 

 

 

 

 

 

 

I1 = β1 (vDS + VC - VT)vDS -

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

v DS

 

 

 

 

 

 

 

 

 

 

 

 

 

 

I2 = β2 (VC - VT )vDS -

2

2

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

I = I

 

+ I

 

= β

 

v

 

2

+ (V

 

- V

 

)v

 

v DS

+ (V

 

- V

 

)v

 

-

v DS

1

2

 

D S

C

T

D S

-

2

C

T

D S

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

I = 2β(VC - VT)vDS

 

 

 

R =

 

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

2β(VC - VT)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Allen and Holberg - CMOS Analog Circuit Design

Page V.2-4

Implementation :

 

VDD

 

+

M3A

-

VC

 

 

 

S

+

 

M1

 

VGS

S

D

 

G -

M2A

i

M2

 

 

-

i

 

 

vDS +

 

 

R

 

 

 

 

VSS

M3B

+

VGS

S

 

-

 

G

M2B

 

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]