Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

Allen and Holberg - CMOS Analog Circuit Design

.pdf
Скачиваний:
44
Добавлен:
05.06.2015
Размер:
2.21 Mб
Скачать

Allen and Holberg - CMOS Analog Circuit Design Page III.1-6

SIMPLIFIED SAH MODEL DERIVATION

Model-

+

 

 

 

vGS

-

 

 

+

 

 

iD

-vDS

 

 

 

n+

 

 

n+

 

v(y)

dy

Drain

 

Source

 

y

p-

 

y y+dy

L

0

 

 

Derivation-

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Let the charge per unit area in the channel inversion layer be

 

Q (y) = C

ox

[v

GS

v(y) V

T

]

(coulombs/cm2)

 

 

I

 

 

 

 

 

 

 

 

 

 

Define sheet conductivity of the inversion layer per square as

 

σ

 

= µoQ (y)

cm2

coulombs

=

amps

=

1

 

S

 

 

 

 

 

 

volt

Ω/sq.

 

 

I

 

v·s

cm2

 

 

 

• Ohm's Law for current in a sheet is

JS =

iD

=

σ E

= σS

dv

.

W

dy

 

 

S y

 

 

Rewriting Ohm's Law gives,

 

 

iD

 

iDdy

 

dv = σSW

dy = µoQ (y)W

 

 

 

 

I

 

where dv is the voltage drop along the channel in the direction of y.

Rewriting as

iD dy = WµoQI(y)dv

and integrating along the channel for 0 to L gives

L

vDS

vDS

iDdy =

WµoQI(y)dv =

WµoCox[vGSv(y)VT] dv

0

0

0

After integrating and evaluating the limits

Wµ C

i = o ox (v V )v

D L GS T DS

v2 DS

2

Allen and Holberg - CMOS Analog Circuit Design

Page III.1-7

ILLUSTRATION OF THE SAH EQUATION

Plotting the Sah equation as iD vs. vDS results in -

iD

vDS = vGS - VT

Non-Sat Region

 

Saturation Region

Increasing values of vGS

vDS

Define vDS(sat) = vGS VT

Regions of Operation of the MOS Transistor

1.) Cutoff Region:

iD = 0, vGS VT < 0 (Ignores subthreshold currents)

2.) Non-saturation Region

i

 

=

µCoxW

 

 

 

 

 

, 0 < v

 

< v

V

 

D

2L

2(vGS VT) vDS v

DS

DS

T

 

 

 

 

 

 

 

 

 

GS

 

3.) Saturation Region

 

 

 

 

 

 

 

 

 

 

 

 

 

i

 

=

µCoxW

2

, 0 < v

 

 

V

 

< v

 

 

 

D

2L

(vGS VT)

 

GS

T

 

 

 

 

 

 

 

 

 

 

 

DS

 

 

Allen and Holberg - CMOS Analog Circuit Design

Page III.1-8

SAH MODEL ADJUSTMENT TO INCLUDE EFFECTS OF VDS ON VT

From the previous derivation:

L

vDS

vDS

iD dy =

WµoQI(y)dy =

WµoCox[vGS v(y) VT]dv

0

0

0

Assume that the threshld voltage varies across the channel in the following way:

VT(y) = VT + v(y)

where VT is the value of the threshold voltage at the source end of the channel.

Integrating the above gives,

iD =

WµoCox

)

v2(y) vDS

L

(vGSVT)v(y) (1+

2

 

 

 

 

0

or

 

 

 

 

 

 

WµoCox

 

v2DS

iD = L

 

)

2

 

(vGSVT)vDS (1+

 

To find vDS(sat), set the derivative of iD with respect to vDS equal to zero and solve for vDS = vDS(sat) to get,

vGS VT vDS(sat) = 1 +

Therefore, in the saturation region, the drain current is

WµoCox

 

2

iD = 2(1+ )L vGS VT

 

Allen and Holberg - CMOS Analog Circuit Design

Page III.1-9

EFFECTS OF BACK GATE (BULK-SOURCE)

Bulk-Source (vBS) influence on the transconductance characteristics-

iD

Decreasing values

 

of bulk-source voltage

 

VBS = 0

 

vDS ≥ vGS - VT

vGS

VT0 VT1

VT2 V

 

T3

In general, the simple model incorporates the bulk effect into VT by the following empirically developed equation-

VT(VBS) =VT0 + γ 2|φf| + |vBS| − γ 2|φf|

Allen and Holberg - CMOS Analog Circuit Design

Page III.1-10

EFFECTS OF THE BACK GATE - CONTINUED

Illustration-

VSB0 = 0V:

 

VSB0=0V

Gate

Drain

 

-

+

VGS>VT

VDS>0

 

 

 

Bulk

 

Source

Poly

 

 

p+

n+

 

n+

p-

Substrate/Bulk

 

 

 

 

 

VSB1>0V:

VSB1

- +

Bulk Source

p+

n+

p- Substrate/Bulk

VSB2 > VSB1:

VSB2

- +

Bulk Source

p+

n+

p- Substrate/Bulk

Gate Drain

VGS>VT VDS>0

Poly

n+

Gate Drain

VGS>VT VDS>0

Poly

n+

Allen and Holberg - CMOS Analog Circuit Design

Page III.1-11

SAH MODEL INCLUDING CHANNEL LENGTH MODULATION

N-channel reference convention:

D iD +

G+ + B vDS

vGS vBS

- - -

S

Non-saturation-

iD =

WµoCox

vDS2

L

(vGS VT)vDS

 

 

 

2

Saturation-

 

 

 

 

iD =

WµoCox

vDS(sat)2

(1 + λvDS)

L

(vGS VT)vDS(sat)

 

 

 

2

 

= WµoCox

(vGS VT) 2 (1 + λvDS)

 

 

2L

 

 

 

where:

µo = zero field mobility (cm2/volt·sec)

Cox = gate oxide capacitance per unit area (F/cm2)

λ= channel-length modulation parameter (volts-1) VT = VT0 + γ 2|φf| + |vBS| 2|φf|

VT0 = zero bias threshold voltage

γ = bulk threshold parameter (volts1/2)

2|φf| = strong inversion surface potential (volts)

When solving for p-channel devices, negate all voltages and use the n- channel model with p-channel parameters and negate the current. Also negate VT0 of the p device.

Allen and Holberg - CMOS Analog Circuit Design

Page III.1-12

OUTPUT CHARACTERISTICS OF THE MOS TRANSISTOR

iD /ID0

 

 

vDS = vGS - VT

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

vGS -VT

 

 

 

 

 

 

 

 

 

 

 

1.0

 

 

 

 

 

 

 

= 1.0

 

 

 

 

 

 

 

 

 

 

VGS0 - VT

 

 

 

 

 

Non-Sat

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Saturation Region

 

 

 

 

 

 

 

 

 

 

 

 

Region

 

 

 

vGS-VT

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0.75

 

 

 

 

 

 

 

 

 

 

= 0.867

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

VGS0 - VT

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Channel modulation effects

 

 

 

 

 

 

 

 

 

 

 

 

vGS-VT

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

= 0.707

 

0.5

 

 

 

 

 

 

V

 

- V

 

 

 

 

 

 

 

 

GS0

 

 

T

 

 

 

 

 

 

 

 

 

 

 

 

 

 

vGS-VT

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

= 0.5

 

 

 

 

 

 

 

 

 

V

 

 

- V

 

 

 

0.25

 

 

 

 

 

 

GS0

 

 

 

T

 

 

 

 

 

 

 

vGS-VT

 

 

 

 

 

 

 

 

 

 

Cutoff Region

 

 

 

= 0

 

 

 

 

 

 

 

 

VGS0 - VT

 

 

 

 

 

 

 

 

 

 

0

 

 

 

 

 

 

 

 

 

vDS

0

0.5

1.0

1.5

2.0

 

2.5

VGS0 - VT

Notation:

W

W

ß = K' L = ( oCox)

L

Note:

oCox = K'

Allen and Holberg - CMOS Analog Circuit Design

Page III.1-13

GRAPHICAL INTERPRETATION OF λ

Assume the MOS is transistor is saturated-

i

 

=

µCoxW

 

D

2L

(vGS VT) 2(1 + λvDS)

 

 

 

 

Define iD(0) = iD when vDS = 0V.

i

D

(0) =

µCoxW

(vGS VT)2

 

2L

 

 

 

 

 

Now,

iD = iD(0) [1+λvDS] = iD(0) + λiD(0) vDS

or

vDS = λiD (0) iD

λ

 

1

1

 

 

 

Matching with y = mx + b gives

 

 

 

 

 

 

 

 

 

 

vDS

 

 

 

 

 

 

 

 

1

 

1

λiD(0)

 

 

 

 

 

 

iD(0)

iD

 

 

 

 

 

 

 

 

-1

 

 

 

 

 

 

λ

 

or

 

 

 

 

 

iD

 

 

 

 

 

 

 

 

 

 

iD3(0)

VGS3

 

 

iD2(0)

VGS2

 

 

i

D1

 

(0)

 

VGS1

vDS

-1

λ

Allen and Holberg - CMOS Analog Circuit Design

Page III.1-14

SPICE LEVEL 1 MODEL PARAMETERS FOR A TYPICAL

BULK CMOS PROCESS (0.8 m)

 

 

 

 

 

 

 

 

Model

Parameter

Typical Parameter

 

 

 

Value

Units

 

 

Parameter

Description

 

 

NMOS

PMOS

 

 

 

 

 

 

 

 

VT0

ThresholdVoltage forVBS = 0V

0.75±0.15

0.85±0.15

Volts

 

 

 

 

 

 

 

 

 

K'

Transconductance Parameter

110±10%

50±10%

µA/V2

 

 

 

(sat.)

 

 

 

 

 

 

 

 

 

 

 

 

γ

Bulk Threshold Parameter

0.4

0.57

V

 

 

 

 

 

 

 

 

 

λ

Channel Length Modulation

0.04 (L=1 m)

0.05 (L = 1 m)

V-1

 

 

0.01 (L=2 m)

0.01 (L = 2 m)

 

 

 

Parameter

 

 

 

 

 

 

 

 

 

 

φ = 2φF

Surface potential at strong

0.7

0.8

Volts

 

 

 

inversion

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

These values are based on a 0.8 m silicon-gate bulk CMOS n-well process.

Allen and Holberg - CMOS Analog Circuit Design

Page III.1-15

WEAK INVERSION MODEL (Simple)

 

 

 

 

iD (nA)

 

 

 

 

 

 

 

 

 

 

 

 

Weak

 

iD

 

 

 

1000.0

 

 

inversion

 

 

 

 

 

 

 

 

 

 

 

 

 

region

Strong

 

 

 

 

 

 

 

 

 

 

 

100.0

 

 

 

 

inversion

 

 

 

 

10.0

 

 

 

 

region

 

 

 

 

 

 

 

 

 

 

 

 

 

1.0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0

VT VON

vGS

0

VT VON

vGS

This model is appropriate for hand calculations but it does not accommodate a smooth transition into the strong-inversion region.

i

 

 

W

I

 

qvGS

D

L

DO

exp

 

 

 

nkT

The transition point where this relationship is valid occurs at approximately

kT vgs < VT + n q

Weak-Moderate-Strong Inversion Approximation

 

 

 

Moderate

 

 

 

inversion region

iD (nA)

 

 

 

 

 

 

 

 

Weak

 

1000.0

 

inversion

Strong

 

 

 

region

100.0

 

 

inversion

 

 

region

10.0

 

 

 

 

 

1.0

 

 

 

0

vGS

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]