Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
МЕДИЦИНСКАЯ МИКРОБИОЛОГИЯ 2011.doc
Скачиваний:
5810
Добавлен:
05.02.2016
Размер:
5.38 Mб
Скачать

5.12. Генная инженерия

Результаты, полученные при изучении генома бактерий и вирусов с их способностью к мутационной и рекомбинационной изменчивости, послужили основой для развития одной из наиболее перспективных областей биотехнологии – генной инженерии.

Генная инженерия основана на конструировании клеток с новыми генетическими свойствами. Для этого в геном клетки вводят различными способами ген или группу генов, кодирующих требуемый белок (гормон, цитокин и др.) Тем самым в клетке образуется рекомбинантная (или химерная) молекула ДНК. При получении клона клеток, обладающих нужными признаками, его размножают и выделяют необходимый продукт.

Этот процесс осуществляется несколькими путями.

В качестве клеток-продуцентов используют как прокариотические клетки (например – E.coli), так и клетки эукариотов (дрожжи S.cerevisiae, клетки растений или зародышевые клетки млекопитающих).

Для введения нужного участка ДНК в геном клетки-продуцента используют различные векторы. Вектор представляет собой репликон (плазмиду, бактериофаг, ретровирус), который включает необходимый ген и способен к переносу в клетку-продуцент. В этой клетке вектор путем рекомбинации может встраиваться в ее геном и экспрессировать соответствующий белок. Полученный трансформированный клон клеток способен производить необходимый пептид в течение нескольких поколений.

Последовательность ДНК вектора конструируется особым образом. В ней сохраняются гены, ответственные за проникновение, встраивание в геном и репликацию вектора, и удаляются несущественные для этих процессов гены.

Для этого геном вектора разрезается специфическими эндонуклеазами-рестриктазами. Вместо этих генов в геном встраивают последовательности, кодирующие требуемый белок, и соединяют молекулу ДНК в единую цепь ферментом лигазой.

Очевидно, что встроенная последовательность ДНК не может быть достаточно большой (обычно – до 10-15 тыс пар нуклеотидов), так как более крупные молекулы просто не могут упаковаться в оболочку вектора (например – в головку бактериофага). Для увеличения необходимой последовательности ДНК в настоящее время конструируют смешанные (химерные) векторы, состоящие из фрагментов нескольких векторов.

К ним относят:

а) космидные векторы (космиды). Они включают небольшой плазмидный вектор (4-5 тыс пар нуклеотидов), участки фага лямбда (cos-последовательности), ответственные за упаковку ДНК в бактериофаг, и достаточно протяженный участок требуемой ДНК, например ДНК человека (до 30-45 тыс пар нуклеотидов);

б) фагмиды и фасмиды. Эти два типа векторов схожи, они состоят из фагов и плазмид, однако у фагмид источник репликации вектора – бактериофаг, тогда как у фасмид – плазмида.

В последнее время для генной инженерии эукариотов широко используется метод микроинъекций ДНК в ядро, а также пересадка клеточных ядер из соматических клеток в яйцеклетки.

Сфера практического применения достижений генной инженерии постоянно расширяется, открывая все новые возможности.

Они могут быть использованы для исправления наследственной и ненаследственной патологии обмена веществ (генотерапия); для создания вакцинных штаммов микроорганизмов; для получения трансформированных штаммов бактерий, способных производить биологически активные соединения (антибиотики, гормоны, цитокины, витамины) в промышленных масштабах.

Одной из наиболее важных задач, стоящих перед генной инженерией, является получение библиотек геномов различных видов организмов, включая человека.

Каждый ген, или группа генов, входящих в такие библиотеки, хранится в отдельном клоне клеток или бактериофаге. Так, например, уже созданы фаговые библиотеки генов, кодирующих активные центры (вариабельные участки) иммуноглобулинов человека. Это делает возможным использование генно-инженерных антител в терапии самых разных заболеваний.

Изучение строения геномов, идентификация и определение функции всех генов человека, животных, микроорганизмов открывает перспективы для предупреждения и лечения наиболее тяжелых болезней, таких, как особо опасные инфекции, сахарный диабет, атеросклероз, онкологическая патология. Этими вопросами занимается новейшая область генетики – геномика.