Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

Лахтин_Матеориаловедение

.pdf
Скачиваний:
6161
Добавлен:
16.02.2016
Размер:
21.38 Mб
Скачать

Соединения одних металлов с другими носят общее название

интерметаллидов, или интерметаллических соединений.

Соединения металла с неметаллом (нитриды, карбиды, гириды и т. д.), которые могут обладать металлической связью,

нередко также называют металлическими соединениями.

Большое число химических соединений, образующихся в металлических сплавах, отличается по некоторым особенностям от типичных химических соединений, так как не подчиняется законам валентности и не имеет постоянного состава.

Ниже будут рассмотрены наиболее важные химические соединения, образующиеся в сплавах.

Фазы внедрения. Переходные металлы (Fe, Mn, Сг, Мо и др.) образуют с углеродом, азотом, бором и водородом, т. е. с элементами, имеющими малый атомный радиус, соединения: карбиды, нитриды, бориды и гидриды. Они имеют общность строения и свойств и часто называются фазами внедрения.

Фазы внедрения имеют формулу М4Х (Fe4N, Mn4N и др.), М2Х

(W2C, Mo2C, Fe2N и др.), MX (WC, VC, TiC, NbC, TiN, VN и др.).

Кристаллическая структура фаз внедрения определяется соотношением атомных радиусов неметалла (Rx) и металла (Rм). Если Rx/Rм < 59, то атомы металла в этих фазах расположены по типу одной из простых кристаллических решеток: кубической (К8, К12) или гексагональной (Г12), в которую внедряются атомы неметалла, занимая в ней определенные поры.

Фазы внедрения являются фазами переменного состава. Карбиды и нитриды, относящиеся к фазам внедрения, обладают высокой твердостью.

Рассмотренные выше твердые растворы внедрения образуются при значительно меньшей концентрации второго компонента (С, N, Н) и имеют решетку металла растворителя, тогда как фазы внедрения получают кристаллическую решетку, отличную от решетки металла.

Если условие Rx/Rм < 0,59 не выполняется, как это наблюдается для карбида железа, марганца и хрома, то образуются соединения с более сложными решетками, и такие соединения нельзя считать фазами внедрения. На базе фаз внедрения легко образуются

твердые растворы вычитания, называемые иногда твердыми растворами с дефектной решеткой. В твердых растворах вычитания часть узлов решетки, которые должны быть заняты атомами одного из компонентов, оказываются свободными. В избытке по сравнению со стехиометрическим соотношением MnXm имеется другой компонент.

Растворы вычитания образуются, например, в карбидах VC, TiC, ZrC, NbG и др.

Электронные соединения. Эти соединения чаще образуются между одновалентными (Сu, Ag, Аu, Li, Na) металлами или металлами переходных групп (Fe, Mn, Go и др.), сОДНОЙ стороны,

41

ипростыми металлами G валентностью от 2 до 5 (Be, Mg, Zn, Cd, Al

идр.), с другой стороны. Соединения этого типа имеют определенное отношение числа валентных электронов к числу атомов, т. е. определенную электронную концентрацию. Так,

существуют соединения, у которых это отношение в одних случаях равно 3/2 (1,5); в других —21/13 (1,62), в третьих — 7/4 (1,75).

Каждому из указанных соотношений соответствуют и определенные типы кристаллической решетки.

Все соединения с электронной концентрацией, равной 3/2 (1,48), имеют кубическую объемно центрированную, сложную кубическую или гексагональную решетку и обозначаются как Р- соединения. К соединениям этого типа относятся CuBe, CuZn,

Сu3А1, Cu5Sn, CoAl, FeAl и др.

Соединения с электронной концентрацией 21/13 (1,62) имеют сложную решетку и обозначаются γ-фазой. К ним относятся

соединения Cu5Zn8, Gu5Cd8, Fe5Zn21, Co5Zn21 и др.

Соединения с электронной концентрацией 7/4 (1,75) имеют плотноупакованную гексагональную решетку и обозначаются ε- фазой. К ним относятся соединения CuZn3, CuCd3, Cu3Si, Cu3Sn,

Au3Sn и др.

Электронные соединения подобно обычным химическим соединениям имеют кристаллическую решетку, отличную от решетки образующих их компонентов. Но в отличие от химических соединений с нормальной валентностью электронные соединения образуют с компонентами, из которых они состоят, твердые растворы в широком интервале концентраций.

Фазы Лавеса. Эти фазы имеют формулу АВ2 и образуются между компонентами типа А и В при отношении атомных диаметров DA/DB 1,2 (чаще 1,1—1,6). Фазы Лавеса имеют плотноупакованную кристаллическую решетку гексагональную (MgZn2 и MgNi2) или гранецентрированную кубическую (MgCu2). К фа-зам Лавеса относятся AgBe2, CaAl2, TiBe2, TiCr2 и др. (тип

MgCu2) или BaMg2, MoBe2, TiMn2 и др. (тип MgZn2).

Кроме рассмотренных металлических соединений существует и ряд других, например фазы со структурой никельарсенида NiAs, а также фазы, обозначаемые σ, λ, δ, µ, S, T, W и т. д., но о них будет сказано при рассмотрении конкретных сплавов.

3. СТРУКТУРА СПЛАВОВ

Строение металлических сплавов зависит от того, в какие взаимодействия вступают компоненты, их образующие. Под структурой, как уже указано ранее, понимают форму, размеры и характер взаимного расположения фаз в сплаве. Структура сплава выявляется микроанализом.

При полной взаимной растворимости компонентов в твердом состоянии микроструктура всех сплавов представляет собой зерна твердого раствора (рис. 32, а). Сплавы однофазные. Аналогичную структуру будут иметь сплавы, у которых количество раствори-

42

43

мого компонента не превышает предельной его растворимости при нормальной температуре. При ограниченной растворимости, которая характерна для многих сплавов (Pb—Sb, Al—Сu, Сu—Zn, Сu—Sn, Mg—Zn, Fe—С и др.), могут образовываться структуры, состоящие из смеси двух или более фаз (твердых растворов или твердых растворов и химических соединений). Если в сплаве растворимый компонент присутствует в количестве, превышающем предельную растворимость его в основном металле при данной температуре, то образуется структура, состоящая из матрицы (основного твердого раствора) и выделившихся частиц другого твердого раствора, чаще на базе химического соединения. Такую структуру называют матричной, или гетерогенной. Так, напри-мер, при кристаллизации многих сплавов на алюминиевой, магниевой, железной и других основах образуются структуры, состоящие из основного твердого раствора на базе металла растворителя и частиц одного или нескольких химических соединений (CuAl2, Al3Mg2, Mg4Al3, Fe3C и др.).

При медленном охлаждении эти фазы выделяются в основном по границам зерен твердого раствора (матрицы) в виде достаточно крупных и нередко равноосных частиц (рис. 32, б). При ускоренном охлаждении благодаря увеличению числа зародышей новой фазы по границам зерен появляется пограничная оболочка из выделяющейся фазы. При определенных условиях в процессе кристаллизации возможно образование второй фазы и внутри зерен на имеющихся здесь дефектах (включениях, границах блоков и т. д.). Форма выделения избыточных фаз может быть пластинчатой, игольчатой или сфероидальной.

При так называемой перетектической кристаллизации (см. с. 62) образуется смесь из двух фаз (твердых растворов), в кото-рой фаза, образующаяся первоначально (например, твердый раствор β), окружена фазой, кристаллизующейся позднее (твердым раствором α) (рис. 32, в). В сплавах нередко образуется структурная составляющая, получившая название эвтектика (см. с. 56). Эвтектика состоит из двух или более фаз (твердых растворов α и β или твердого раствора α и химического соединения), имеющих форму пластинок, равномерно чередующихся между собой, которые образуют колонии. Иногда обе фазы в колониях непрерывно разветвлены одна в другой (рис. 32, д). Наряду с этой структурой в эвтектике могут присутствовать обособленные кристаллы α- и β-твердых растворов (рис. 32, г и е).

При образовании смеси фаз рентгенограммы таких сплавов показывают наличие кристаллических решеток соответствующего числа фаз, образующих его структуру.

Структура сплавов, их фазовый состав, а следовательно, и свойства зависят от состава сплава и той обработки, которую он прошел. Ниже будут рассмотрены формирование различных структур сплавов и влияние структуры (фазового состава) на свойства сплавов.

44

Вопросы для самопроверки

1.Что такое твердый раствор? Какие виды твердых растворов Вы знаете?

2.Каковы условия полной взаимной растворимости двух компонентов?

3.Какие Вы знаете интерметаллические (металлические) соединения?

4.Что такое матричная структура?

ГЛАВА IV. ФОРМИРОВАНИЕ СТРУКТУРЫ СПЛАВОВ ПРИ КРИСТАЛЛИЗАЦИИ

1. ПРОЦЕСС КРИСТАЛЛИЗАЦИИ И ФАЗОВЫЕ ПРЕВРАЩЕНИЯ В СПЛАВАХ

В жидком состоянии большинство металлов неограниченно растворяется друг в друге, образуя однофазный жидкий раствор. Только некоторые металлы, например железо со свинцом, медь со свинцом, почти полностью не растворимы в жидком состоянии и разделяются по плотности, образуя два несмешивающихся жидких слоя.

Переход сплава из жидкого состояния в твердое, как и при кристаллизации чистых металлов, протекает только при наличии некоторого переохлаждения, когда энергия Гиббса жидкой фазы оказывается выше энергии Гиббса твердой фазы. Процесс затвердевания протекает в результате образования центров кристаллизации (зародышей) и последующего их ровта в виде дендритных или полногранных кристаллитов.

Любые твердые фазы, образующиеся в жидком сплаве, отличаются по составу от исходного жидкого раствора, поэтому для образования устойчивого зародыша необходимы не только гетерофазные флуктуации, но и флуктуации концентрации.

Флуктуациями концентрации называют временно возникающие отклонения химического состава сплава в отдельных малых объемах жидкого раствора от среднего его состава. Такие флуктуации возникают вследствие диффузионного перемещения атомов вещества в результате тепловых движений в жидком растворе.

Зародыш новой фазы может возникнуть только в тех микрообъемах исходной фазы, состав которых в результате флуктуации концентрации и расположения атомов соответствует составу и строению новой кристаллизующейся фазы. Если при этом концентрационные флуктуации соответствуют микрообъемам, имеющим размер не меньше критического, возникает устойчивый зародыш, способный к росту.

Наличие в жидкой фазе взвешенных частиц, отвечающих рассмотренным выше условиям модифицирования, способствует образованию большого числа зародышей.

Во многих сплавах после их затвердевания, т. е. в твердом состоянии, происходят фазовые превращения. Они вызываются полиморфными превращениями компонентов и распадом твердого

45

раствора в связи с изменением взаимной растворимости компонентов в твердом состоянии.

Превращения в твердом состоянии протекают в результате образования зародышей новой фазы и последующего их роста. Фазовые превращения в твердом состоянии также должны отвечать основному термодинамическому условию — уменьшать энергию Гиббса всей системы. Однако при фазовых превращениях в твердом состоянии нужно учитывать кроме выигрыша в энергии Гиббса при образовании зародыша новой фазы ∆GV и увеличение энергии Гиббса за счет образования поверхности раздела между зародышем новой и исходной фаз ∆Gпов (см. с. 28), повышение свободной энергии системы за счет упругой деформации матрицы вблизи зародыша ∆Gдеф. В общем виде уравнение энергетического баланса при образовании новой фазы в матрице выглядит так:

Для начала превращения необходимо, чтобы ∆GV > ∆Gпов +

+ ∆Gдеф.

Распад твердого раствора или полиморфное превращение протекает с образованием фаз, имеющих состав, отличный от исходной матричной фазы, поэтому для гомогенного возникновения зародыша новой фазы критического размера необходимо наличие флуктуации концентрации. Чаще зародыши образуются в дефектных местах кристаллической решетки, на границах зерен, в местах скопления дислокаций, на включениях примесей и т. д. (гетерогенное зарождение). Это объясняется уменьшением работы образования зародышей (по сравнению с гомогенным зарождением), ускорением диффузионных процессов и тем самым облегчением получения концентрационных флуктуации, необходимых для зарождения новой фазы. Рост зародышей новой фазы происходит неупорядоченным переходом атомов через границу раздела из исходной фазы во вновь образуемую.

Диффузионная подвижность атомов в твердом состоянии меньше, чем в жидком, поэтому образование и рост зародышевой новой фазы в твердом состоянии затруднены сложностью получения требуемых флуктуации состава и замедленным подводом атомов одного из компонентов исходной (матричной) фазы к границам кристалла.

При образовании зародыша новой фазы во многих случаях соблюдается принцип структурного и размерного соответствия.

Зародыш новой фазы сопряжен с исходной фазой (матрицей) по определенным кристаллографическим плоскостям, наиболее сходным по расположению атомов и по расстоянию между ними.

Пока на границе новой и исходной фаз существует сопряженность, или когерентность, решеток по определенным кристаллографическим плоскостям (рис. 33, а), рост новой фазы происходит с большой скоростью, так как атомы перемещаются упорядоченно на незначительные расстояния. Однако образование зародыша

46

новой фазы влечет за собой возникновение упругой энергии (т. е. энергии упругой деформации) за счет разности удельного объема исходной и новой фаз. Величина этой энергии в некоторый момент превышает предел упругости среды, что вызывает сдвиговую деформацию, нарушение когерентности и образование межфазовой границы (рис. 33, б). Вследствие этого когерентный рост становится невозможным.

Когерентный рост может быть нарушен и при достижении растущим кристаллом границы зерна или других дефектов кристалла.

При высоких температурах когерентность быстро нарушается, поскольку предел упругости оказывается сильно сниженным, однако рост кристаллов новой фазы продолжается достаточно быстро, но уже в результате диффузионного перемещения атомов от матричной фазы к новой через границу раздела фаз. Такой механизм превращения называется диффузионным, или нормальным.

Если при этом между исходной и новой фазами существует структурное соответствие, то новая фаза располагается вдоль определенных кристаллографических плоскостей исходной фазы в виде пластин или игл. Такую структуру называют

видманштеттовой1.

Если новая стабильная фаза по составу и структуре кристаллической решетки сильно отличается от исходной, нередко возникает метастабильная фаза, которая по составу или структуре является промежуточной.

При определенных условиях метастабильная фаза переходит в стабильную, что сопровождается снижением свободной энергии. Этот переход обычно ведет к нарушению когерентной связи решеток и образованию обычной межфазной границы (см. рис. 33, б).

1 По имени австрийского исследователя А. Видманштеттена, который в 1908 г. обнаружил такую структуру в железоникелевом метеорите.

47

При больших скоростях охлаждения можно подавить нормальные диффузионные превращения, например полиморфное, распад твердого раствора и др. При быстром охлаждении распад твердого раствора не происходит и сплав после охлаждения будет состоять из метастабильной при низкой температуре фазы, устойчивой при высокой температуре.

В случае полиморфного превращения при переохлаждении высокотемпературной фазы до низких температур происходит бездиффузионное превращение высокотемпературной модификации (b) в низкотемпературную (а). При этом изменение состава фаз не происходит. Превращение протекает сдвиговым путем, в основе которого лежит кооперативное и закономерное перемещение атомов, когда они сохраняют своих соседей и смещаются по отношению друг к другу на расстояния, меньшие межатомных. Новая фаза когерентно связана с исходной фазой. При нарушении когерентности рост кристаллов прекращается, так как диффузионный переход из одной фазы в другую при низких температурах невозможен. Превращение развивается за счет образования новых кристаллов, когерентно связанных с исходной фазой. Рост кристаллов новой фазы протекает с большой скоростью (~ 103 м/с).

Такое превращение называют мартенситным (см. с. 170), а образующую фазу мартенситом.

2. ДИАГРАММЫ ФАЗОВОГО РАВНОВЕСИЯ

Диаграммы фазового равновесия, или диаграммы состояния, в удобной графической форме показывают фазовый состав сплава в зависимости от температуры и концентрации. Диаграммы состояния строят для условий равновесия или условий, достаточно близких к ним.

Равновесное состояние соответствует минимальному значению энергии Гиббса. Это состояние может быть достигнуто только при очень малых скоростях охлаждения или длительном нагреве. В связи с этим рассмотрение диаграмм состояния позволяет определить фазовые превращения в условиях очень медленного охлаждения или нагрева. Истинное равновесие в практических условиях достигается редко. В подавляющем числе случаев сплавы находятся в метастабильном состоянии, т. е. в таком состоянии, когда они обладают ограниченной устойчивостью и под влиянием внеш-них факторов переходят в другие более устойчивые состояния, так как их энергия Гиббса больше минимальной. Для целей практики важно, что метастабильные состояния нередко сообщают сплавам высокие механические или другие свойства. В этом случае металловедение должно установить природу метастабильных состояний, обеспечивающих оптимальный комплекс свойств, и разработать режимы термической или какой-либо другой обработки, позволяющей получить эти неравновесные состояния. Исходным положением при решении этих задач является знание диаграмм фазового равновесия.

48

Правило фаз. Диаграммы фазового равновесия характеризуют окончательное или предельное состояние сплавов, т. е. полученное после того, как все превращения в них произошли и полностью закончились. Это состояние сплава зависит от внешних условий (температуры, давления) и характеризуется числом и концентрацией образовавшихся фаз. Закономерность изменения числа фаз в гетерогенной системе определяется правилом фаз.

Правило фаз устанавливает зависимость между числом степеней свободы, числом компонентов и числом фаз и выражается уравнением

С = К + 2 - Ф,

где С — число степеней свободы системы (или вариантность); К — число компонентов, образующих систему, т. е. минимальное число химических элементов, необходимых для образования любой фазы системы; 2 — число внешних факторов; Ф — число фаз, находящихся в равновесии.

Под числом степеней свободы (вариантностью системы) понимают возможность изменения температуры, давления и концентрации без изменения числа фаз, находящихся в равновесии.

При изучении физико-химических равновесий за внешние факторы, влияющие на состояние сплава, принимают температуру

идавление. Применяя правило фаз к металлам, можно во многих случаях принять изменяющимся только один внешний фактор — температуру, так как давление, за исключением очень высокого, мало влияет на фазовое равновесие сплавов в твердом и жидком состояниях. Тогда уравнение примет следующий вид: С = К + + 1

— Ф. Так как число степеней свободы не может быть меньше нуля

ине может быть дробным числом, то К — Ф + 1 > 0, а Ф < К + 1, т. е. число фаз в сплаве, находящемся в равновесном состоянии, не может быть больше, чем число компонентов плюс единица. Следовательно, в двойной системе в равновесии может находиться не более трех фаз, в тройной — не более четырех и т. д.

Если в равновесии в системе с определенным числом компонентов находится максимальное число фаз, то число степеней свободы системы равно нулю (С = 0). Такое равновесие называют нонвариантным (безвариантным). При нонвариантном равновесии сплав из данного числа фаз может существовать только в совершенно определенных условиях: при постоянной температуре и определенном составе всех находящихся в равновесии фаз. Это означает, что превращение начинается и заканчивается при одной постоянной температуре.

Вслучае уменьшения числа фаз на одну против максимально возможного число степеней свободы возрастает на единицу (С = 1). Такую систему называют моновариантной (одновариантной). Когда С = 2, система бивариантна (двухвариантна).

Равновесие в двухкомпонентных системах. Как уже было отмечено, условием равновесия является минимум свободной

49

энергии. Самопроизвольно в системе протекают лишь те физические процессы, при которых свободная энергия уменьшается. Если сплав состоит из одной фазы, например, жидкого или твердого раствора α, то энергия Гиббса G (Gж, Gα ) при постоянной температуре и давлении зависит от ее природы и состава фазы (рис. 34, а). Для случая, приведенного на рис. 34, а, устойчив твердый раствор а, так как у него энергия Гиббса (Gα) ниже, чем у жидкой фазы

(Gж).

Если система (сплав) состоит из двух и более фаз, то при постоянной температуре и давлении ее энергия Гиббса определяется по правилу смешения (рис. 34, б).

Точка Gc (рис. 34, б), характеризующая энергию Гиббса сплава состава Сс, лежит на прямой, соединяющей точки, характеризующие энергию Гиббса α- и β-фаз (Gα и Gβ) и делит эту прямую на отрезки, обратно пропорциональные массовым количествам α-иβ-фаз.

Если α- и β-фазы, образующие данную систему, могут изменять свой состав, то энергия Гиббса каждой фазы в зависимости от концентрации может изменяться так, как это показано на рис. 34, в.

Состав фаз, находящихся в равновесии при данной температуре, отвечает точкам Сα и Сβ (рис. 34, в). Двухфазное состояние соответствует концентрациям, лежащим в пределах Сα и Сβ, где энергия Гиббса смеси двух фаз α-состава Сα и β-состава Сβ, определяемая точками на прямой аб, меньше свободной энергии отдельных фаз. Составы, имеющие концентрацию меньше, чем Сα в условиях равновесия будут состоять только из α-фазы, а сплавы с концентрацией более Сβ — из β-фазы.

В двухкомпонентной системе при некоторых условиях, например, при нонвариантном равновесии (С = 0), могут одновременно сосуществовать три фазы, например жидкая фаза и два твердых раствора.

Изотермы свободной энергии в зависимости от состава для этого случая приведены на рис. 34, г. Состав фаз, находящихся в равновесии, определяется проекцией на ось концентрации точек

касания прямой линии — к кривым Gα, Gγ и Gβ (точки Сα, Сγ и Сβ). При данной температуре в равновесии могут существовать

(см. рис. 34, г): одна α-фаза в сплавах, имеющих концентрацию

50