Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ВСЕ.docx
Скачиваний:
86
Добавлен:
18.02.2016
Размер:
1.29 Mб
Скачать

Динамика плоского движения твердого тела

Положение тела определяется положением полюса и углом поворота тела вокруг полюса. Дифф-ные уравнения плоского движения тв. тела:

;   ;,   С – центр масс тела,JC – момент инерции тела относительно оси, перпендикулярной плоскости движения тела и проходящей через его центр масс.

27

 Силой трения называют силу, которая возникает при движении одного тела по поверхности другого. Она всегда направлена противоположно направлению движения. Сила трения прямо пропорциональна силе нормального давления на трущиеся поверхности и зависит от свойств этих поверхностей. Законы трения связаны с электромагнитным взаимодействием, которое существует между телами.

Различают трение внешнее и внутреннее.

       Внешнее трение возникает при относительном перемещении двух соприкасающихся твердых тел (трение скольжения или трение покоя).

       Внутреннее трение наблюдается при относительном перемещении частей одного и того же сплошного тела (например, жидкость или газ).

       Различают сухое и жидкое (или вязкое) трение.

       Сухое трение возникает между поверхностями твердых тел в отсутствие смазки.

       Жидким (вязким) называется трение между твердым телом и жидкой или газообразной средой или ее слоями.

       Сухое трение, в свою очередь, подразделяется на трение скольжения и трение качения.

Рассмотрим законы сухого трения (рис. 4.5).

Рис. 4.5

Рис. 4.6

       Подействуем на тело, лежащее на неподвижной плоскости, внешней силой , постепенно увеличивая ее модуль. Вначале брусок будет оставаться неподвижным, значит, внешняя силауравновешивается некоторой силой, направленной по касательной к трущейся поверхности, противоположной силе. В этом случаеи есть сила трения покоя.

Установлено, что максимальная сила трения покоя не зависит от площади соприкосновения тел и приблизительно пропорциональна модулю силы нормального давления  N:

μ0 – коэффициент трения покоя, зависящий от природы и состояния трущихся поверхностей.

       Когда модуль внешней силы, а следовательно, и модуль силы трения покоя превысит значение  F0, тело начнет скользить по опоре – трение покоя  Fтр.пок  сменится трением скольжения  Fск  (рис. 4.6):

 

Fтр = μ N,

(4.4.1)

 

где  μ  – коэффициент трения скольжения.

       Трение качения возникает между шарообразным телом и поверхностью, по которой оно катится. Сила трения качения подчиняется тем же законам, что и сила трения скольжения, но коэффициент трения  μ ; здесь значительно меньше.

       Подробнее рассмотрим силу трения скольжения на наклонной плоскости (рис. 4.7).

На тело, находящееся на наклонной плоскости с сухим трением, действуют три силы: сила тяжести  , нормальная сила реакции опорыи сила сухого трения. Силаесть равнодействующая сили; она направлена вниз, вдоль наклонной плоскости. Из рис. 4.7 видно, что

F = mg sin α,         N = mg cos α.

Рис. 4.7

       Если  – тело остается неподвижным на наклонной плоскости. Максимальный угол наклона  α  определяется из условия  (Fтр)max = F  или  μ mg cosα = mg sinα, следовательно,  tg αmax = μ, где  μ  – коэффициент сухого трения.

Fтр = μN = mg cosα,  F = mg sinα.

       При  α > αmax  тело будет скатываться с ускорением

a = g ( sinα - μ cosα ),  Fск = ma = F - Fтр.        Если дополнительная сила  Fвн, направленная вдоль наклонной плоскости, приложена к телу, то критический угол  αmax  и ускорение тела будут зависеть от величины и направления этой внешней силы.

28

Деформа́ция (от лат. deformatio — «искажение») — изменение взаимного положения частиц тела, связанное с их перемещением относительно друг друга. Деформация представляет собой результат изменения межатомных расстояний и перегруппировки блоков атомов. Обычно деформация сопровождается изменением величин межатомных сил, мерой которого является упругое механическое напряжение.

По характеру приложенной к телу нагрузки виды деформацииподразделяют следующим образом:

  • Деформация растяжения;

  • Деформация сжатия;

  • Деформация сдвига (или среза);

  • Деформация при кручении;

  • Деформация при изгибе.

Если принять направление внешней силы, стремящейся удлинить образец, за положительное, то F > 0 при деформации растяжения и F < 0 – при сжатии. Отношение модуля внешней силы F к площади S сечения тела называется механическим напряжением σ: 

Зависимость между ε и σ является одной из важнейших характеристик механических свойств твердых тел. Графическое изображение этой зависимости называется диаграммой растяжения. По оси абсцисс откладывается относительное удлинение ε, а по оси ординат – механическое напряжение σ. Типичный пример диаграммы растяжения для металлов (таких как медь или мягкое железо) представлен на рис. 3.7.2.

Рисунок 3.7.2.

Типичная диаграмма растяжения для пластичного материала. Голубая полоса – область упругих деформаций

При малых деформациях (обычно существенно меньших 1 %) связь между σ и ε оказывается линейной (участок Oa на диаграмме). При этом при снятии напряжения деформация исчезает. Такая деформация называется упругой. Максимальное значениеσ = σпр, при котором сохраняется линейная связь между σ и ε, называется пределом пропорциональности (точка a). На линейном участке выполняется закон Гука

Если σ > σупр, образец после снятия напряжения уже не восстанавливает свои первоначальные размеры и у тела сохраняется остаточная деформация εост. Такие деформации называются пластическими (участки bccd и de). На участке bc деформация происходит почти без увеличения напряжения. Это явление называется текучестью материала. В точке d достигается наибольшее напряжение σmax, которое способен выдержать материал без разрушения (предел прочности). В точке e происходит разрушение материала.

Преде́л про́чности — механическое напряжение , выше которого происходит разрушение материала.

29

Стационарное течение жидкости - это такое течение, при котором скорость жидкости в каждой данной точке остается постоянной как по величине, так и по направлению. Для стационарного течения форма и расположение линий тока со временем не изменяются. Рассмотрим какую-либо трубку тока. За время dt через произвольное сечение S ходит объем жидкости Svdt. Выберем два ее сечения.

Гидродинамика занимается изучением движения несжимаемых жидкостей и их взаимодействия с твердыми телами. Для описания движения несжимаемых жидкостей, вводят понятие линий тока.

Линии, касательные к которым в каждой точке совпадают с вектором скорости v, называются линиями тока. Густота линий пропорциональна величине скорости в данном месте.

В общем случае величина и направление вектора v может меняться с течением времени. Если же вектор скорости в каждой точке жидкости остается постоянным, то течение называется установившимся, или стационарным. Картина линий тока при стационарном течении остается неизменной, и линии тока в этом случае совпадают с траекториями частиц жидкости.

Часть жидкости, ограниченная линиями тока называется трубкой тока. Ясно, что жидкость не может вытекать или втекать через боковую поверхность трубки тока. Так как жидкость несжимаема, то количество жидкости, протекающее через любое поперечное сечение одной и той же трубки тока одинаково. Следовательно, можно записать:

S•v=const (1.66)

где S - поперечное сечение трубки тока, v - скорость жидкости для этой трубки тока. Данное уравнение называют уравнением неразрывности струи.

30

Уравнение Бернулли для жидкости Рассмотрим поток жидкости, проходящий по трубопроводу переменно­го сечения (рис. 10). В первом сечении гидродинамический напор пусть ра­вен H1. По ходу движения потока часть напора H1 необратимо потеря­ется из-за проявления сил внутреннего трения жидкости и во втором сечении напор уменьшится до H2 на величину потерь напора H. Уравнение Бeрнýлли для жидкости в самом простейшем виде записывается так: H1 = H2 + H , то есть это уравнение для двух сечений потока в направлении его течения, выраженное через гидродинамические напоры и отражающее закон сохра­нения энергии (часть энергии переходит в потери) при движении жидкости. Уравнение Бeрнýлли в традиционной записи получим, если в по­следнем ра­венстве раскроем значения гидродинамических напоров H1 и H2 (м) :  

. Энергетический смысл уравнения Бeрнулли заключается в том, что оно отражает закон сохранения энергии: сумма потенциальной z+hp, кинетической v2/2g энергии и энергии потерь H остаётся неизменной во всех точках потока.

Полная энергия жидкости складывается из ее Потенциальной энергии в поле сил тяжести и поверхностной энергии, обусловленной силами поверхностного натяжения. 

31

Все течения жидкости и газа качественно разделяются на 2 режима – ламинарный и турбулентный.

Ламинарное течение (lamina – пластинка, полоска) – это упорядоченное плавное течение жидкости, при котором жидкость перемещается как бы слоями, параллельными направлению течения (например – стенкам цилиндрической трубы), не перемешиваясь. Эти течения наблюдаются или у очень вязких жидкостей, или при малых скоростях течения, а также при течениях в узких трубках или при обтекании тел малых размеров.

Вообще тот или иной режим течения характеризуется числом Рейнольдса , гдеV– характерная скорость течения,l– характерный линейный размер,– кинематический коэффициент вязкости; Re – безразмерный параметр.

Для каждого вида течения существует такое критическое число Рейнольдса, что при  Re<Reкр  возможно только ламинарное течение, в то время как при  Re>Reкр  течение может потерять устойчивость по отношению к малым возмущениям (случайным отклонениям) исходных параметров и стать турбулентным (например, для течения жидкости в цилиндрической трубе круглого поперечного сечения диаметром  dRe =Vсрd/Ѕ  –  Reкр H 2300).

При турбулентном течении (turbulentus – беспорядочный, вихревой) частицы жидкости совершают неустановившиеся движения по сложным траекториям, что приводит к интенсивному перемешиванию между слоями жидкости, т.е. слоистая структура течения нарушается; при этом местные значения параметров движения – V,p,T,… испытывают хаотические флуктуации, т.е. случайные отклонения от средних значений, и изменяются нерегулярно во времени и пространств

Точное описание турбулентных течений весьма сложно, поэтому обычно для упрощения их условно заменяют фиктивными слоистыми течениями с некоторыми осредненными по времени скоростями , полагая  ,  где–так называемая флуктуация или пульсация скорости, которая считается малой добавкой к , т.е. ; при этом фиктивное осредненное течение со скоростью  часто можно считать установившимся, т.е. , а само турбулентное течение – квазистационарным. Аналогично осредняются и другие термогазодинамические параметры:  p = ,  T =,…

число, или, правильнее,критерий Рейно́льдса(), — безразмерная величина, характеризующая отношение нелинейного и диссипативного членов вуравнении Навье — Стокса[1]. Число Рейнольдса также считаетсякритерием подобиятечения вязкойжидкости.

Число Рейнольдса определяется следующим соотношением:

 Re = vLρ/η

где ρ — плотность жидкости, v — скорость потока, а L — характерная длина элемента потока (в этой формуле важно помнить, что Re — это одно число, а не произведение R × e).

Теперь давайте посмотрим на размерность составляющих числа Рейнольдса:

  • размерность коэффициента вязкости η — ньютоны умножить на секунды разделить на кв. метры, или н·с/м2. Если вспомнить, что, по определению, н = кг·м/c2, мы получимкг/м·с

  • размерность плотности ρ — килограммы разделить на кубические метры, или кг/м3

  • размерность скорости v — метры разделить на секунды, или м/с

  • размерность длины элемента потока L — метры, или м

Наиболее обтекаемо такое тело, которое при данной лобовой площади имеет наименьшее сопротивление.

Форма тела, закруглённого спереди и заострённого сзади, возможно более гладкая, без выступов, является наиболее обтекаемой. Такую форму придают снарядам, подводным лодкам, торпедам, гоночным автомобилям, корпусу и крыльям самолёта, подводным частям судов.?

 Выясним теперь, какими физическими процессами определяется уменьшение сопротивления движению тела, которому придана обтекаемая форма.

 Для этого будем помещать в поток жидкости тела различной формы и, меняя скорость потока, наблюдать картины линий тока, получившиеся при обтекании жидкостью этих тел.

 На рисунке изображена картина линий тока жидкости, получившаяся при обтекании ею цилиндра с различной скоростью. При малых скоростях обтекания линии тока, обойдя цилиндр, располагаются позади него так же, как и перед ним. По мере же увеличения скорости обтекания жидкость позади цилиндра приходит в круговое вихревое движение.

 Жидкость, вращающаяся в вихре, движется быстрее жидкости в стационарном потоке. Но мы знаем, что давление в жидкости тем меньше, чем быстрее она движется (вспомните всасывающее действие струи жидкости). Следовательно, с задней стороны цилиндра, где образовались вихри, давление становится меньше, чем с передней. Разность давлений впереди и позади движущегося тела и создаёт сопротивление движению тела.

 К этому сопротивлению присоединяется ещё сопротивление, обусловленное внутренним трением; оно выражается в том, что движущееся тело увлекает за собой слои жидкости. Однако измерения показывают, что это сопротивление мало, и при больших скоростях существенного значения оно не имеет.

 Итак, главнейшей причиной, обусловливающей сопротивление жидкости движению тела, является образование вихрей позади движущегося тела, обусловленное также вязкостью жидкости. Поэтому для уменьшения этого сопротивления надо придать телу такую форму, при которой завихрение жидкости получается наименьшим.

 Тело обтекаемой формы обладает малым сопротивлением потому, что жидкость всюду прилегает к его поверхности и позади него не завихрена.

 На рисунке изображена картина линий тока вокруг тела обтекаемой формы. Сзади такого тела вихри почти не образуются.

Лобовое сопротивление—сила, препятствующая движению тел в жидкостях и газах. Лобовое сопротивление складывается из двух типов сил: силкасательного (тангенциального) трения, направленных вдоль поверхности тела, исил давления, направленных понормалик поверхности. Сила сопротивления являетсядиссипативнойсилой и всегда направлена против вектора скорости тела в среде. Наряду сподъёмной силойявляется составляющей полной аэродинамической силы.

Сила лобового сопротивления обычно представляется в виде суммы двух составляющих: сопротивления при нулевой подъёмной силе и индуктивного сопротивления. Каждая составляющая характеризуется своим собственным безразмерным коэффициентом сопротивления и определённой зависимостью от скорости движения.

Подъёмная сила — составляющая полной аэродинамической силы, перпендикулярная вектору скорости движения тела в потоке жидкости или газа, возникающая в результате несимметричности обтекания тела потоком. В соответствии с законом Бернулли, статическое давление среды в тех областях, где скорость потока более высока, будет ниже, и наоборот. Например, крыло самолета имеет несимметричный профиль (верхняя часть крыла более выпуклая), вследствие чего скорость потока по верхней кромке крыла будет выше, чем над нижней. Создавшаяся разница давлений и порождает подъёмную силу.

Эффект Магнуса — физическое явление, возникающее при обтекании вращающегося тела потоком жидкости или газа. Образуется сила, воздействующая на тело и направленная перпендикулярно направлению потока. Это является результатом совместного воздействия различных физических явлений, таких как эффект Бернулли и образование пограничного слоя в среде вокруг обтекаемого объекта.

Вращающийся объект создаёт в среде вокруг себя вихревое движение. С одной стороны объекта направление вихря совпадает с направлением обтекающего потока и, соответственно, скорость движения среды с этой стороны увеличивается. С другой стороны объекта направление вихря противоположно направлению движения потока, и скорость движения среды уменьшается. Ввиду этой разности скоростей возникает разность давлений, порождающая поперечную силу от той стороны вращающегося тела, на которой направление вращения и направление потока противоположны, к той стороне, на которой эти направления совпадают

32

Ламинарное течение (lamina – пластинка, полоска) – это упорядоченное плавное течение жидкости, при котором жидкость перемещается как бы слоями, параллельными направлению течения (например – стенкам цилиндрической трубы), не перемешиваясь. Эти течения наблюдаются или у очень вязких жидкостей, или при малых скоростях течения, а также при течениях в узких трубках или при обтекании тел малых размеров.

Вообще тот или иной режим течения характеризуется числом Рейнольдса , гдеV– характерная скорость течения,l– характерный линейный размер,– кинематический коэффициент вязкости; Re – безразмерный параметр.

Для каждого вида течения существует такое критическое число Рейнольдса, что при  Re<Reкр  возможно только ламинарное течение, в то время как при  Re>Reкр  течение может потерять устойчивость по отношению к малым возмущениям (случайным отклонениям) исходных параметров и стать турбулентным (например, для течения жидкости в цилиндрической трубе круглого поперечного сечения диаметром  dRe = Vсрd–  Reкр H 2300).

Схематичное изображение ламинарного (a) и турбулентного (b) течения в плоском слое

Ламина́рное тече́ние (лат.lāmina— «пластинка») — течение, при которомжидкостьилигазперемещается слоями без перемешивания и пульсаций (то есть беспорядочных быстрых изменений скорости и давления).

33

Закон сохранения механической энергии и закон сохранения импульса позволяют находить решения механических задач в тех случаях, когда действующие силы неизвестны. Примером такого рода задач является ударное взаимодействиетел.

С ударным взаимодействием тел нередко приходится иметь дело в обыденной жизни, в технике и в физике (особенно в физике атома и элементарных частиц).

Ударом (илистолкновением) принято называть кратковременное взаимодействие тел, в результате которого их скорости испытывают значительные изменения. Во время столкновения тел между ними действуют кратковременные ударные силы, величина которых, как правило, неизвестна. Поэтому нельзя рассматривать ударное взаимодействие непосредственно с помощью законов Ньютона. Применение законов сохранения энергии и импульса во многих случаях позволяет исключить из рассмотрения сам процесс столкновения и получить связь между скоростями тел до и после столкновения, минуя все промежуточные значения этих величин.

В механике часто используются две модели ударного взаимодействия – абсолютно упругийиабсолютно неупругий удары.

Абсолютно неупругим ударом называют такое ударное взаимодействие, при котором тела соединяются (слипаются) друг с другом и движутся дальше как одно тело.

При абсолютно неупругом ударе механическая энергия не сохраняется. Она частично или полностью переходит во внутреннюю энергию тел (нагревание).

Примером абсолютно неупругого удара может служить попадание пули (или снаряда) в баллистический маятник. Маятник представляет собой ящик с песком массойM, подвешенный на веревках (рис. 1.21.1). Пуля массойm, летящая горизонтально со скоростьюпопадает в ящик и застревает в нем. По отклонению маятника можно определить скорость пули.

Абсолютно упругим ударом называется столкновение, при котором сохраняется механическая энергия системы тел.

Во многих случаях столкновения атомов, молекул и элементарных частиц подчиняются законам абсолютно упругого удара.

При абсолютно упругом ударе наряду с законом сохранения импульса выполняется закон сохранения механической энергии.

Простым примером абсолютно упругого столкновения может быть центральный удардвух бильярдных шаров, один из которых до столкновения находился в состоянии покоя (рис. 1.21.2).

Центральным ударом шаров называют соударение, при котором скорости шаров до и после удара направлены по линии центров.

коэффициент восстановления относительной скорости -  в теории удара, величина, зависящая от упругих свойств соударяющихся тел и определяющая, какая доля начальной относительной скорости этих тел восстанавливается к концу удара (см. Удар). В. к. характеризует потери механической энергии соударяющихся тел вследствие появления в них остаточных деформаций и их нагревания. При прямом ударе тела о неподвижную преграду (плиту) В. к. k = u/v, где v и u — скорости тела в начале и в конце удара по отношению к плите.

34

Молекулярно-кинетическая теория (МКТ) – это учение, которое объясняет тепловые явления в макроскопических телах и внутренние свойства этих тел движением и взаимодействием атомов, молекул и ионов, из которых состоят тела. В основе МКТ строения вещества лежат три положения:

  1. Вещество состоит из частиц – молекул, атомов и ионов. В состав этих частиц входят более мелкие элементарные частицы. Молекула – наименьшая устойчивая частица данного вещества. Молекула обладает основными химическими свойствами вещества. Молекула является пределом деления вещества, то есть самой маленькой частью вещества, которая способна сохранять свойства этого вещества. Атом – это наименьшая частица данного химического элемента.

  2. Частицы, из которых состоит вещество, находятся в непрерывном хаотическом (беспорядочном) движении.

  3. Частицы вещества взаимодействуют друг с другом – притягиваются и отталкиваются.

35

Существуют два определения понятия идеального газа: термо­динамическое и молекулярно-кинетическое. В термодинамике под идеальным газом понимают газ, у которого при изотермическом процессе при постоянной массе давление обратно пропорциональ­но его объему (или газ, в точности подчиняющийся газовым за­конам). С молекулярно-кинетической точки зрения идеальный газ — это газ, молекулы которого представляют собой материальные точки, не взаимодействующие друг с другом на расстоянии, но взаимодействующие при столкновениях по закону абсолютно уп­ругого удара. Такое определение модели вполне правомерно, так как силы взаимодействия между молекулами газа в десятки мил­лионов раз меньше, чем в жидкостях и твердых телах, т. е. ими можно пренебречь. Принимая молекулы газа за материальные точки, исходят из того, что их суммарный объем много меньше объема сосуда и его можно не учитывать. Это связано с тем, что расстояния между молекулами газов в десятки раз больше, чем в жидкостях и твердых телах. Следует иметь в виду, что принятая модель «идеальный газ» «работает» только тогда, когда газ нахо­дится в равновесном состоянии.

Модель «идеальный газ» имеет определенные границы приме­нимости: она не применима при высоких давлениях и низких тем­пературах. Если газ сжать, то увеличится его плотность и умень­шатся расстояния между молекулами, поэтому размерами моле­кул уже нельзя пренебречь, а давление газа будет зависеть не только от ударов молекул, но и от их взаимодействия. Из экспе­римента известно, что при давлении газа ~ 108 Па наблюдают существенные отклонения от закона Бойля — Мариотта. То же са­мое происходит и при понижении температуры.

Для измерения масс атомов и молекул в физике и химии принята единая система измерения. Эти величины измеряются в относительных единицах – атомных единицах массы.

Атомная единица массы(а.е.м.) равна 1/12 массыmатома углерода12С (mодного атома12С равна 1,993 • 10-26кг).

Относительная атомная масса элемента (Ar)– это безразмерная величина, равная отношению средней массы атома элемента к 1/12 массы атома12С. При расчете относительной атомной массы учитывается изотопный состав элемента. ВеличиныArопределяют потаблице Д.И. Менделеева.

Абсолютная масса атома (m)равна относительной атомной массе, умноженной на 1 а.е.м. Например, для атома водорода абсолютная масса определяется следующим образом:

m(H) = 1,008 • 1,661 • 10-27 кг = 1,674 • 10-27 кг

Относительная молекулярная масса соединения (Mr)– это безразмерная величина, равная отношению массыmмолекулы вещества к 1/12 массы атома12С:

Относительная молекулярная масса равна сумме относительных масс атомов, входящих в состав молекулы. Например:

М r(C2H6) = 2 • A r(C) + 6 • A r(H) = 2 • 12 + 6 = 30.

Абсолютная масса молекулыравна относительной молекулярной массе, умноженной на 1 а.е.м.

m(C2H6) = Mr(C2H6) • 1,661 • 10-27 кг = 49,82 • 10-27 кг.

Количество вещества — физическая величина, характеризующая количество однотипных структурных единиц, содержащихся в веществе. Под структурными единицами понимаются любые частицы, из которых состоит вещество (атомы,молекулы, ионы, электроны или любые другие частицы). Единица измерения количества вещества в СИ — моль.

n = V/Vm; Vm = 22,4 л/моль (постоянная) n = N/Na ; Na = 6,02*10^23 (в 23 степени) (постоянная)

АВОГАДРО ЧИСЛО, NA = (6,0220450,000031)1023, число молекул в моле любого вещества или число атомов в моле простого вещества. Одна из фундаментальных постоянных, с помощью которой можно определить такие величины, как, например, массу атома или молекулы (см. ниже), заряд электрона и т.д.

 Опытное определение постоянной Авогадро. Воспользовавшись идеей распределения молекул по высоте, французский ученый Ж. Перрен (1870—1942) экспериментально нашел значение постоянной Авогадро. Во время исследований под микроскопом броуновского движения, он увидел, что броуновские частицы распределяются по высоте подобно молекулам газа в поле тяготения. Применив к ним больцмановское распределение, можно записать

<L1>\<L2>=n1\n2=p1\p2

где m—масса частицы, m1—масса вытесненной ею жидкости; m=4/3πr3ρ, m1=4/3πr3ρ1 (r — радиус частицы, ρ — плотность частицы, ρ1 — плотность жидкости).  Если n1 и n2 — концентрации частиц на уровнях h1 и n2, a k=R/NA, то  Na= (3RTLn(n1\n2))\(4pir^3(p-p1)g(h2-h1) Значение NA, получаемое из работ Ж. Перрена, соответствовало значениям, которые полученны в других опытах, что подтверждает применимость к броуновским частицам распределения Больцмана. 

36

Молекулярно-кинетическая теория (сокращённо МКТ) — теория XIX века, рассматривавшая строение вещества, в основном газов, с точки зрения трёх основных приближенно верных положений:  - Все вещества состоят из мельчайших частиц -молекул и атомов, которые, в свою очередь, состоят из более мелких элементарных частиц (наблюдение больших белковых молекул в электронных микроскопах) - частицы находятся в непрерывном хаотическом движении (тепловом);  - Между молекулами и атомами существуют силы притяжения и отталкивания. Основными доказательствами этих положений считались:  - Диффузия  - Броуновское движение  - Изменение агрегатных состояний веществ

Броуновское движение - беспорядочное движение взвешенных в жидкости частиц за счет соударения с молекулами жидкости

Диффузия - явление проникновения молекул одного вещества в промежутки между молекулами другого

37

 Давление газа на стенку сосуда есть результат ударов мапе-кул газа об эту стенку. При каждом ударе молекула газа действует на стенку с определенной (с макроскопической точки зрения бесконечно малой) силой. Обратно направленная сила, с которой действует на молекулу стенка сосуда, заставляет молекулу отражаться от стенки. Если бы в сосуде содержалось всего несколько молекул, го пх удары следовали бы друг за другом редко и беспорядочно, п нельзя было бы говорить ни о какой регулярной силе давления, действующей на стенку. Мы имели бы дело с отдельными практически мгновенными бесконечно малыми толчками, которым время от времени подвергалась бы стенка. Если же число молекул в сосуде очень велико, то будет велико и числе ударов их о стенку сосуда. Удары станут следовать непрерывно друг за другом. Одновременно о стенку сосуда будет ударяться громадное количество молекул. Бесконечно малые силы отдельных ударов складываются в конечную и почти постоянную силу, действующую на стенку. Эта сила, усредненная по времени, и есть давление газа, с которым имеет дело макроскопическая физика.

P=1\3*n*m*v^2

- основное уравнение МКТ идеального газа. Выведено в предположении, что давление газа есть результат ударов его молекул о стенки сосуда. Это же уравнение в другой записи:

Давлениесмесихимическине взаимодействующихидеальных газовравно суммепарциальных давлений.

38

Температу́ра (от лат. temperatura — надлежащее смешение, нормальное состояние) — скалярная физическая величина, характеризующая состояние термодинамического равновесия макроскопической системы. Температура всех частей системы, находящейся в равновесии, одинакова. Если система не находится в равновесии, то между её частями, имеющими различную температуру, происходит теплопередача (переход энергии от более нагретых частей системы к менее нагретым), приводящая к выравниванию температур в системе.

Из того, что температура — это кинетическая энергия молекул, ясно, что наиболее естественно измерять её в энергетических единицах (то есть в системе СИ в джоулях). Однако измерение температуры началось задолго до создания молекулярно-кинетической теории, поэтому практические шкалы измеряют температуру в условных единицах — градусах.

Ке́львин (обозначение: K) — единица термодинамической температуры в Международной системе единиц (СИ), одна из семи основных единиц СИ. Предложена в 1848 году. Один кельвин равен 1/273,16 части термодинамической температуры тройной точки воды[1]. Начало шкалы (0 К) совпадает с абсолютным нулём.

Пересчёт в градусы Цельсия: °С = K−273,15 (температура тройной точки воды — 0,01 °C).

Термо́метр (греч.θέρμη — тепло; μετρέω — измеряю) —прибор для измерения температуры воздуха, почвы, воды и так далее. Существует несколько видов термометров:

  • жидкостные

  • механические

  • электрические

  • оптические

  • газовые

  • инфракрасные

39

Закон Бойля-Мариотта - Для данной массы газа m при неизменной температуре Т произведение давления на объем есть величина постоянная:

 Гей-Люссаком  - Для данной массы m при постоянном давлении р объем газа линейно зависит от температуры:

 Шарлем - Для данной массы m при постоянном объеме V давление газа линейно зависит от температуры:

Опытные законы Бойля-Мариотта, Гей-Люссака и Шарля справедливы для широкого интервала давлений, объемов и температур. Однако когда давления превышают атмосферное в 300-400 раз, или температуры очень высоки, наблюдаются отклонения от этих законов. Тем не менее, во многих случаях эти законы удобны для практического применения.

Если бы существовал газ, для которого не было бы отклонений от этих законов, то такой газ был бы идеальным газом.

40  

 Состояние идеального газа. Частицы (атомы, молекулы) реально существующих газов обладают собственными размерами, занимают некоторый объем пространства, и в некоторой степени зависимы друг от друга. Силы физического взаимодействия между частицами газа затрудняют их движение и уменьшают их подвижность. По этим причинам газовые законы и следствия из нихдостаточно строго соблюдаются только для разреженных реальных газов, для которых рассояние между частицами значительно превышает собственный размер частиц газа, а взаимодействие между частицами сведено кминимуму. При обычном (атмосферном) давлении газовые законы становятся приблеженными, а при высоком давлении не выполняются совсем.    В связи с этим в науке присутствует понятие о состоянии идеального газа, при котором частицы рассматриваются как геометрические точки с нулевыми размерами и не взаимодействующие друг с другом. Таким образом, идеальный газ - это абстракция, а реальный газ приближается к модели идеального газа тем в большей степени, чем больше различаются температура равновесной конденсации этого газа и температура, при которой этот газ находится.    При комнатной температуре и атмосферном давлении к идеальному состоянию приближаются такие газы, как H2, N2, O2, температуры равновесной конденсации которых равны (округленно) 20K, 77K, 90K. Аммиак и диоксид серы (температура конденсации 240K 263K) далеки от состояния идеального газа, но при 500°C и выше поведение этих газов уже подчиняется, приближенно, уравнению состояния идеального газа.

   Уравнение состояния идеального газа. Значение молярного объема газа, равное 22,4 л/моль, относится к норамльным физическим условиям, под которыми понимаются давление равное 1,01325·105 Па, или 1 атм, и термодинамическая температура, равная 273,15 К (0°C).

41

Молекулы газа вследствие теплового движения испытывают многочисленные соударения друг с другом. При каждом соударении скорости молекул изменяются как по величине, так и по направлению. В результате в сосуде, содержащем большое число молекул, устанавливается некоторое статистическое распределение молекул по скоростям, зависящее от абсолютной температуры Т. При этом все направления векторов скоростей молекул оказываются равноправными (равновероятными), а величины скоростей подчиняются определенной закономерности. Распределение молекул газа по величине скоростей называется распределением Максвелла.

Если одновременно измерить скорости большого числа N молекул газа и выделить некоторый малый интервал скоростей от v до v+v, то в выделенный интервалv попадает некоторое числоN молекул. На графике удобно изображать зависимость величиныот скорости v. При достаточно большом числе N эта зависимость изображается плавной кривой, имеющей максимум при(наиболее вероятная скорость). Здесь m - масса молекулы,- постоянная Больцмана.

Характерным параметром распределения Максвелла является так называемая среднеквадратичная скорость означает среднее значение квадрата скорости. В молекулярной физике доказывается, что

где - молярная масса.

Из выражения для среднеквадратичной скорости следует, что средняя кинетическая энергия поступательного движения молекул газа есть

Распределение Максвелла является одной из важнейших статистических закономерностей молекулярной физики.

1) наиболее вероятную ,

2) среднюю ,

3) среднюю квадратичную 

42

Барометрическая формула. Если температура не зависит от высоты, то давление газа меняется с высотой по закону: , где— высота,— молярная газовая постоянная,— постоянная Больцмана,— ускорение свободного падения вблизи поверхности земли,— молярная масса газа,— масса одной молекулы,— абсолютная температура.

Поделив барометрическую формулу на , с учетом уравнения состояния идеального газа, получим распределение Больцмана — зависимость концентрации молекул от потенциальной энергии: , где  — потенциальная энергия молекулы. В однородном поле силы тяжести .

43

Термодинамика – это наука о тепловых явлениях. В противоположность молекулярно-кинетической теории, которая делает выводы на основе представлений о молекулярном строении вещества, термодинамика исходит из наиболее общих закономерностей тепловых процессов и свойств макроскопических систем. Выводы термодинамики опираются на совокупность опытных фактов и не зависят от наших знаний о внутреннем устройстве вещества, хотя в целом ряде случаев термодинамика использует молекулярно-кинетические модели для иллюстрации своих выводов.

Если термодинамическая система была подвержена внешнему воздействию, то в конечном итоге она перейдет в другое равновесное состояние. Такой переход называется термодинамическим процессом. Если процесс протекает достаточно медленно (в пределе бесконечно медленно), то система в каждый момент времени оказывается близкой к равновесному состоянию

Внутренняя энергия идеального газа зависит только от его температуры и не зависит от объема

Таким образом, внутренняя энергия U тела однозначно определяется макроскопическими параметрами, характеризующими состояние тела. Она не зависит от того, каким путем было реализовано данное состояние. Принято говорить, что внутренняя энергия является функцией состояния.

Работа численно равна площади под графиком процесса на диаграмме (p, V). Величина работы зависит от того, каким путем совершался переход из начального состояния в конечное. На рис. 3.8.2 изображены три различных процесса, переводящих газ из состояния (1) в состояние (2). Во всех трех случаях газ совершает различную работу.

44.

1-ое начало термодинамики и его применение к различным процессам.

Количество теплоты, сообщенное термодинамической системе, расходуется на изменение ее внутренней энергии и на совершение работы системой против внешних сил.

Если вместо работы A системы над внешними телами ввести работу внешних сил A ' (А = –A '), то первое начало термодинамики можно переписать так:

ΔU=Q+A

Изменение внутренней энергии термодинамической системы равно сумме работы, произведенной над системой внешними силами, и количеству теплоты, переданному системе в процессе теплообмена.

Первое начало термодинамики является обобщением закона сохранения энергии для механических и тепловых процессов. Например, рассмотрим процесс торможения бруска на горизонтальной поверхности под действием силы трения. Скорость бруска уменьшается, механическая энергия «исчезает». Но при этом трущиеся поверхности (брусок и горизонтальная поверхность) нагреваются, т.е. механическая энергия превращается во внутреннюю.

Применение первого начала к различным тепловым процессам

Изохорный процесс

Объем не изменяется: V = const. Следовательно, ΔV = 0 и А = –A ' = 0, т.е. никакой механической работа не совершается. Первое начало термодинамики будет иметь вид:

Q=ΔU.

При изохорном процессе вся энергия, сообщаемая газу путем теплообмена, расходуется целиком на увеличение его внутренней энергии.

Изотермический процесс

Температура газа не изменяется: Τ = const. Следовательно, ΔT = 0 и ΔU = 0. Первое начало термодинамики будет имеет вид:

Q=A.

При изотермическом процессе вся энергия, сообщаемая газу путем теплообмена, идет на совершение газом работы.

Изобарный процесс

Давление не изменяется: p = const. При расширении газ совершает работу Α = p⋅ΔV и нагревается, т.е. изменяется его внутренняя энергия.

Первое начало термодинамики будет имеет вид:

Q=A+ΔU.

При изобарном процессе количество теплоты, сообщенное термодинамической системе, расходуется на изменение ее внутренней энергии и на совершение работы системой против внешних сил.

Адиабатный процесс

Это процесс, в котором теплообмен с окружающей средой не происходит, т.е. Q=0

0=ΔU+A

ΔU=-A или ΔU=A’

45.Теплоемкость.Уравнение Майера. Недостатки классической теории теплоемкости.

Количество тепла, при получении которого температура тела повышается на один градус, называется теплоемкостью. Согласно этому определению

. (2.33)

Теплоемкость различается в зависимости от того, при каких условиях происходит нагревание тела — при постоянном объеме или при постоянном давлении.

Если нагревание тела происходит при постоянном объеме, т. е. dV = 0, то работа равна нулю. В этом случае передаваемое телу тепло идет только на изменение его внутренней энергии, dQ = dE, и в этом случае теплоемкость равна изменению внутренней энергии при изменении температуры на 1 К, т. е.

. (2.34)

Поскольку для газа , то.

Эта формула определяет теплоемкость 1 моля идеального газа, называемую молярной. При нагревании газа при постоянном давлении его объем меняется, сообщенное телу тепло идет не только на увеличение его внутренней энергии, но и на совершение работы, т.е. dQ = dE + PdV. Теплоемкость при постоянном давлении .

Для идеального газа PV = RT и поэтому PdV = RdT.

Учитывая это, найдем

. (2.36)

Отношение представляет собой величину, характерную для каждого газа и определяемую числом степеней свободы молекул газа. Измерение теплоемкости тела есть, таким образом, способ непосредственного измерения микроскопических характеристик составляющих его молекул.

Формулы для теплоемкости идеального газа приблизительно верно описывают эксперимент, причем, в основном, для одноатомных газов. Согласно формулам, полученным выше, теплоемкость не должна зависеть от температуры. На самом деле наблюдается картина, изображенная на рис., полученная опытным путем для двухатомного газа водорода. На участке 1 газ ведет себя как система частиц, обладающих лишь поступательными степенями свободы, на участке 2 возбуждается движение, связанное с вращательными степенями свободы и, наконец, на участке 3 появляются две колебательные степени свободы. Ступеньки на кривой хорошо согласуются с формулой (2.35), однако между ними теплоемкость растет с температурой, что соответствует как бы нецелому переменному числу степеней свободы. Такое поведение теплоемкости указывает на недостаточность используемого нами представления об идеальном газе для описания реальных свойств вещества.

Уравнение Майера: Cp=Cv+R. R-газовая постоянная. Ср в процессе с постоянным давлением всегда больше теплоемкости Cv в.

46.

Адиабатный процесс. Уравнение адиабаты.

Адиабатный процесс — это процесс, происходящий без теплообмена системы с окружающей средой, т.е. Q = 0.

Такие процессы происходят при хорошей теплоизоляции системы либо при быстрых процессах, когда теплообмен практически не успевает произойти. Первое начало термодинамики будет имеет вид:

ΔU+A=0 или A=−ΔU.

Если А > 0 (ΔV > 0 газ расширяется), то ΔU < 0 (газ охлаждается), т.е.

при адиабатном расширении газ совершает работу и сам охлаждается.

Охлаждение воздуха при адиабатном расширении вызывает, например, образование облаков.

Если А < 0 (ΔV < 0 газ сжимается), то ΔU > 0 (газ нагревается), т.е.

при адиабатном сжатии над газом совершается работа и газ нагревается.

Это используется, например, в дизельных двигателях, где при резком сжатии воздуха температура повышается настолько, что воспламеняются пары топлива в двигателе.

Уравнение адиабаты

PV^ γ=const

TV^(γ-1)= const

47.

Уравнение политропного процесса.

Политропный процесс, политропический процесс — термодинамический процесс, во время которого удельная теплоёмкость газа остаётся неизменной.

Показатель политропы-- n

Кривая на термодинамических диаграммах, изображающая политропный процесс, называется «политропа». Для идеального газа уравнение политропы может быть записано в виде:

pV^n=const

где р — давление, V — объем газа, n — «показатель политропы».

n=(c-cp)/(c-cv)

Изопроцессы также относятся к политропным:

  1. адиабатный процесс (С=0)

n

  1. изобарный процесс (С=Ср)

n=0

  1. изотермический процесс (С=∞)

n=1

  1. изохорный процесс (С=Сv)

n= ∞

48.

Равновесные и неравновесные процессы .Обратимые и необратимые процессы.

Пусть цилиндр с поршнем заполнен газом. Если поршень неподвижен и температура окружающего воздуха неизменна, то газ в цилиндре находится в термодинамическом равновесии: давление газа во всех точках внутри цилиндра одинаково, а температура равна температуре окружающих тел.

Если сжимать газ в цилиндре под поршнем, то состояние его будет меняться: объем уменьшаться, а давление расти. Мы видим, что термодинамические параметры изменяются со временем, происходит, как говорят, термодинамический процесс. Но если сжатие происходит очень медленно, то в любой момент времени будет успевать устанавливаться новое состояние равновесия с новыми значениями давления и объема. Подобные медленные процессы называются равновесными.

Если после медленного сжатия проводить равновесный процесс в обратном направлении, т. е. предоставить газу возможность медленно расширяться, то он пройдет через ту же последовательность равновесных состояний, что и при сжатии. По этой причине равновесные процессы называются обратимыми..

Процесс изменения состояния, сопровождающийся нарушением равновесия в системе, называется неравновесным. Пусть поршень сожмет газ в цилиндре очень быстро. Тогда равновесное состояние будет нарушено, и лишь спустя некоторое время (время релаксации) газ перейдет в новое равновесное состояние. Такой процесс сжатия будет необратимым: при быстром сжатии давление под поршнем в первый момент больше, чем в остальном цилиндре, а при быстром расширении — меньше.

Предположим для простоты, что необратимость цикла обусловлена тем, что теплообмен между рабочим телом и источником теплоты (считаем холодильник тоже «источником», только отрицательной температуры) происходит при конечных разностях температур, т.е. нагреватель, отдавая тепло, охлаждается на ∆T, а холодильник нагревается на ΔТ.

       Любой процесс, не удовлетворяющий условию обратимости, мы называем необратимым процессом. Примером необратимого процесса является процесс торможения тела под действием сил трения. При этом скорость тела уменьшается, и оно останавливается. Энергия механического движения тела расходуется на увеличение энергии хаотического движения частиц тела и окружающей среды. Происходит диссипация энергии. Для продолжения движения необходим компенсирующий процесс охлаждения тела и среды. В нашем случае тепловых машин, нагреватель и холодильник – не идеальны, они не обладают бесконечной теплоёмкостью и в процессе работы получают или отдают добавочную температуру ΔТ.

49.

Циклические процессы. КПД цикла. Цикл Карно.

Цикл Карно́ — идеальный термодинамический цикл. Тепловая машина Карно, работающая по этому циклу, обладает максимальным КПД из всех машин, у которых максимальная и минимальная температуры осуществляемого цикла совпадают соответственно с максимальной и минимальной температурами цикла Карно. Состоит из 2 адиабатических и 2 изотермических процессов.

50.

Циклы Отто и Дизеля.

Цикл Отто — термодинамический цикл, описывающий рабочий процесс двигателя внутреннего сгорания с воспламенением сжатой смеси от постороннего источника энергии, цикл бензинового двигателя. Назван в честь немецкого инженера Николауса Отто.

Идеальный цикл Отто состоит из четырёх процессов:

p-V диаграмма цикла Отто

1—2 адиабатное сжатие рабочего тела;

2—3 изохорный подвод теплоты к рабочему телу;

3—4 адиабатное расширение рабочего тела;

4—1 изохорное охлаждение рабочего тела.

η=1-(1/n^(γ-1))

где —n=v2/v1 степень сжатия,

γ— показатель адиабаты.

Идеальный цикл лишь приблизительно описывает процессы, происходящие в реальном двигателе, но для технических расчётов в большинстве случаев точность такого приближения удовлетворительна.

Цикл Дизеля — термодинамический цикл, описывающий рабочий процесс двигателя внутреннего сгорания с воспламенением впрыскиваемого топлива от разогретого рабочего тела, цикл дизельного двигателя.

Идеальный цикл Дизеля состоит из четырёх процессов:

p-V диаграмма цикла Дизеля

1—2 адиабатное сжатие рабочего тела;

2—3 изобарный подвод теплоты к рабочему телу;

3—4 адиабатное расширение рабочего тела;

4—1 изохорное охлаждение рабочего тела.

η=1-(1/γ)*((m^γ-1)/(m-1))*(1/(n^(γ-1)))

где n=v1/v2 — степень сжатия,

m=v3/v2 — коэффициент предварительного расширения,

γ— показатель адиабаты.

Идеальный цикл лишь приблизительно описывает процессы, происходящие в реальном двигателе, но для технических расчётов в большинстве случаев точность такого приближения удовлетворительна.

51.

2-ое начало термодинамики и его различные формулировки . Статистически смысл 2-го начала термодинамики

Второе начало термодинамики можно сформулировать как закон возрастания энтропии замкнутой системы при необратимых процессах: любой необратимый процесс в замкнутой системе происходит так, что энтропия системы при этом возрастает.

Можно дать более короткую формулировку второго начала термодинамики: в процессах, происходящих в замкнутой системе, энтропия не убывает. Существенен момент, что речь идет о замкнутых системах, так как в незамкнутых системах энтропия может вести себя произвольным образом (возрастать, убывать, оставаться постоянной). Кроме того, повторим еще раз, что энтропия остается постоянной в замкнутой системе только при обратимых процессах. При необратимых процессах и в замкнутой системе энтропия всегда возрастает.

Формула Больцмана S=k•lnW дает объяснение постулируемое вторым началом термодинамики возрастанию энтропии в замкнутой системе при необратимых процессах: возрастание энтропии означает переход системы из менее вероятных в более вероятные состояния. Значит, формула Больцмана дает статистическое толкование второго начала термодинамики. Являясь статистическим законом, оно описывает закономерности хаотического движения огромного числа частиц, которые составляющих замкнутую систему.

Дадим еще две формулировки второго начала термодинамики:

1) по Кельвину: невозможен круговой процесс, единственным результатом которого является превращение теплоты, полученной от нагревателя, в эквивалентную ей работу;

2) по Клаузиусу: невозможен круговой процесс, единственным результатом которо¬го является передача теплоты от менее нагретого тела к более нагретому

52.

Энтропия. Её физический смысл. Вычисление изменения энтропии в различных процессах

ЭНТРОПИЯ - (от греч. entropia - поворот - превращение) (обычно обозначаетсяS), функция состояния термодинамической системы, изменение которой dS в равновесном процессе равно отношению количества теплоты dQ, сообщенного системе или отведенного от нее, к термодинамической температуре Т системы. Неравновесные процессы в изолированной системе сопровождаются ростом энтропии, они приближают систему к состоянию равновесия, в котором S максимальна. Понятие "энтропия" введено в 1865

Р. Клаузиусом.

Энтропия системы является функцией ее состояния, определенная с точностью до произвольной постоянной.         Если система совершает равновесный переход из состояния 1 в состояние 2, то изменение энтропии

 

.

 

(6.2.1)

       Таким образом, по формуле (6.2.1) можно определить энтропию лишь с точностью до аддитивной постоянной, т.е. начало энтропии произвольно. Физический смысл имеет лишьразность энтропий.         Исходя из этого, найдем изменения энтропии в процессах идеального газа.         Так как при Т = const,

 

,

 

 

 

,

 

 

 

, или 

 

 

 

.

 

(6.2.2)

Таким образом, изменение энтропии ΔS1-2 идеального газа при переходе его из состояния 1 в состояние 2 не зависит от вида перехода 1 - 2.         Каждый из изопроцессов идеального газа характеризуется своим изменением энтропии, а именно:

  • изохорический:  , т.к. ;

  • изобарический:  т.к. Р1 = Р2;

  • изотермический:  т.к. ;

  • адиабатический:  , т.к. 

53.

Холодильная машина и нагреватель. Её эффективность.

Холодильная машина – это машина, работающая по обратному циклу Карно (рис. 5.4). То есть если проводить цикл в обратном направлении, тепло будет забираться у холодильника и передаваться нагревателю (за счет работы внешних сил).

       Обратный цикл Карно можно рассмотреть на примере рис. 5.5. При изотермическом сжатии В–А, от газа отводится количество теплоты Q1 при Т1. В процессе изотермического расширения D–С к газу подводится количество теплоты Q2.

       В этом цикле и работа, совершаемая над газом, отрицательна, т.е.

 

 

(5.5.3)

       Если рабочее тело совершает обратный цикл, то при этом можно переносить энергию в форме тепла от холодного тела к горячему за счет совершения внешними силами работы.

       Для холодильных машин, работающих по циклу Карно

 

.

54.

Теоремы Карно. Неравенство Клаузиуса.

Теоремы Карно.

Французским инженером С. Карно были исследованы различные циклы, по которым работают тепловые машины, и сформулированы некоторые общие принципы, касающиеся теоретически возможных КПД таких машин. Теперь эти принципы известны как теоремы Карно, которые гласят:

1.КПД обратимого цикла Карно, осуществляемого между двумя источниками теплоты, не зависит от свойств рабочего вещества, с помощью которого этот цикл осуществляется. (КПД тепловой машины, работающей по циклу Карно не зависит от рода в-ва и конструктивных особенностей машины, а зависит только от температуры нагревателя Т1 и температуры холодильника Т2.)

  1. КПД тепловой машины, работающей по обратному циклу Карно максимально.

КЛАУЗИУСА НЕРАВЕНСТВО -неравенство, выражающее теорему термодинамики: для кругового процесса.

 Количество теплоты, полученное системой при любом круговом процессе, делённое на абсолютную температуру, при которой оно было получено (приведённое количество теплоты), неположительно.

Необратимому (хотя бы на одном участке) циклу соответствует неравенство, циклу, состоящему только из обратимых процессов,- знак равенства (равенство Клаузиуса

55.

Свойства вещества при температуре близкой к 0 К. 3-ье начало термодинамики.

Первое и второе начала термодинамики не позволяет определить значение энтропии при абсолютном нуле Т = 0 К.

       На основании обобщения экспериментальных исследований свойств различных веществ при сверхнизких температурах был установлен закон, устранивший указанный недостаток. Сформулировал его в 1906 г. Нернст, и называется он третьим началом термодинамики, или теоремой Нернста.       Нернст сформулировал теорему для изолированных систем, а затем М. Планк распространил ее на случай любых систем, находящихся в термодинамическом равновесии. Как первое и второе начала термодинамики, теорема Нернста может рассматриваться как результат обобщения опытных фактов, поэтому ее часто называют третьим началом термодинамики.

    Третье начало термодинамики можно сформулировать следующим способом: при абсолютном нуле температуры любые изменения термодинамической системы происходят без изменения энтропии.

т.е. 

или

(6.8.1)

       Принцип Нернста был развит М. Планком, предположившим, что при абсолютном нуле температуры энергия системы минимальна. Тогда можно считать, что при абсолютном нуле система имеет одно квантовое состояние:

 

,

 

(6.8.2)

 

, тогда

 

 

 

56

Ионная и ковалентная связи. Силы Ван-дер-Вальса. Потенциал Леннарда-Джонса

Ионная связь — очень прочная химическая связь, образующаяся между атомами с большой разностью (>1,5 по шкале Полинга) электроотрицательностей, при которой общая электронная пара полностью переходит к атому с большей электроотрицательностью. Это притяжение ионов как разноименно заряженных тел.

Ковалентная связь (атомная связь, гомеополярная связь) — химическая связь, образованная перекрытием (обобществлением) пары валентных электронных облаков. Обеспечивающие связь электронные облака (электроны) называются общей электронной парой.

Сила Ван-дер-Вальса – сила взаимодействия, возникающия между электрически нейтральными атомами и молекулами с энергией 0,8 — 8,16 кДж/моль. , проявляется на расстоянии порядка 10-7см.

Cила межмолекулярного притяжения, имеет три составляющие. Они обладают несколько отличной физической природой, но их потенциал зависит от расстояния между молекулами одинаково – как 1/r6. Это счастливое обстоятельство позволяет непосредственно сравнивать константы взаимодействия, соответствующие трем составляющим силы Ван-дер-Ваальса, причем по причине их одинаковой зависимости от расстояния, пропорция между компонентами будет сохраняться при различных r. Сами же константы при множителе 1/r6 будут отличаться для разных веществ.

  F = Fор + Fинд + Fдисп ~ r–7,

В основе всех трех составляющих силы Ван-дер-Ваальса лежит взаимодействие диполей, поэтому напомним две основные формулы.

WD = -dE (2)

Существует три типа ван-дер-ваальсовых сил:

- ориентационные силы,

-дисперсионные (лондоновские) силы,

-индукционные силы.

Потенциал Леннард-Джонса (потенциал 6-12) — простая модель парного взаимодействия неполярных молекул, описывающая зависимость энергии взаимодействия двух частиц от расстояния между ними. Эта модель достаточно реалистично передаёт свойства реального взаимодействия сферических неполярных молекул и поэтому широко используется в расчётах и при компьютерном моделировании. Впервые этот вид потенциала был предложен Леннард-Джонсом в 1924 году.[1]

57.

Переход из газообразного состояния в жидкое. Область 2-х фазных состояний. Критическое состояние и его свойства. Экспериментальные изотермы.

Конденса́ция паров (лат. condense — уплотняю, сгущаю) — переход вещества в жидкое или твёрдое состояние из газообразного. Максимальная температура, ниже которой происходит конденсация, называется критической. Пар, из которого может происходить конденсация, бывает насыщенным или ненасыщенным.

Конденсация насыщенных паров

При наличии жидкой фазы вещества конденсация происходит при сколь угодно малых пересыщениях и очень быстро. В этом случае возникает подвижное равновесие между испаряющейся жидкостью и конденсирующимися парами. Уравнение Клапейрона — Клаузиуса определяет параметры этого равновесия — в частности, выделение тепла при конденсации и охлаждение при испарении.

Критическое состояние и его свойства.

состояние вещества в точках фазовых переходов II рода. К. с., являющееся предельным случаем равновесия двухфазных систем, наблюдается в чистых веществах при равновесии жидкость — газ, а в растворах — при фазовых равновесиях газ — газ, жидкость — жидкость, жидкость — газ, твёрдое тело — твёрдое тело. На диаграммах состояния К. с. соответствуют предельные точки на кривых равновесия фаз (рис. 1, а и б) — т. н. критические точки.Согласно фаз правилу критическая точка изолирована в случае двухфазного равновесия чистого вещества, а, например, в случае бинарных (двойных) растворов критические точки образуют критическую кривую в пространстве термодинамических переменных (параметров состояния). Значения параметров состояния, соответствующие К. с., называются критическими — критическое давление рк, критическая температура Тк, критический объём Vк.

В двухкомпонентных системах характерные для К. с. явления наблюдаются не только в критической точке равновесия жидкость — газ, но и в так называемых критических точках растворимости, где взаимная растворимость компонентов становится неограниченной. Существуют двойные жидкие системы как с одной, так и с двумя критическими точками растворимости — верхней и нижней (рис. 2, а и б). Эти точки являются температурными границами области расслаивания жидких смесей на фазы различного состава. Аналогичной способностью к расслаиванию при определённой критической температуре обладают некоторые растворы газов и твёрдые растворы.

При приближении к К. с. физические свойства вещества резко изменяются: теоретически неограниченно возрастает теплоёмкость и восприимчивость системы к внешним воздействиям (например, изотермическая сжимаемость в случае чистых жидкостей, магнитная восприимчивость у ферромагнетиков и т. д.); наблюдается целый ряд др. особенностей в поведении вещества (см. Критические явления). Эти особенности, характерные для К. с. объектов самой различной природы, объясняются тем, что свойства вещества в К. с. определяются не столько конкретными законами взаимодействия его частиц, сколько резким возрастанием в веществе флуктуаций и радиуса их корреляции. Знание особых свойств веществ в К. с. необходимо во многих областях науки и техники: при создании энергетических установок на сверхкритических параметрах, сверхпроводящих систем, установок для сжижения газов, разделения смесей и т. д

Экспериментальные изотермы.

Реальные газы отличаются от идеальных тем, что молекулы этих газов имеют конечные собственные объемы и связаны между собой сложными силами взаимодействия. При высоких давлениях и достаточно низких температурах реальные газы конденсируются, т. е. переходят в жидкое состояние, чего принципиально не может быть с идеальными газами.

рис. 1

58.

Уравнение Ван-дер-Вальса .Изотермы газа Ван-дер-Вальса.

Уравнение Ван-дер-Ваальса (van der Waals J.D.) является наиболее известным аналитическим уравнением состояния реального газа:

Обозначения

R - универсальная газовая постоянная

P - давление

Pc - критическое давление

T - температура

Tc - критическая температура

V - мольный объем

Vc - критический мольный объем

Изотермы Ван-дер-Ваальса и их анализ

Для исследования поведения реального газа рассмотрим изотермы Ван-дер-Ваальса — кривые зависимости р от Vm при заданных Т, определяемые уравнением Ван-дер-Ваальса (61.2) для моля газа. Эти кривые (рассматриваются для четырех различных температур; рис. 89) имеют довольно своеобразный характер. При высоких температурах (T > Tк) изотерма реального газа отличается от изотермы идеального газа только некоторым искажением ее формы, оставаясь монотонно спадающей кривой. При некоторой температуре Tк на изотерме имеется лишь одна точка перегиба К.

Эта изотерма называется критической, соответствующая ей температура Tк — критической температурой; точка перегиба К называется критической точкой; в этой точке касательная к ней параллельна оси абсцисс. Соответствующие этой точке объем Vк, и давление рк называются также критическими. Состояние с критическими параметрами (pк, Vк, Tк) называется критическим состоянием. При низких температурах (Т < Tк ) изотермы имеют волнообразный участок, сначала монотонно опускаясь вниз, затем монотонно поднимаясь вверх и снова монотонно опускаясь.

Для пояснения характера изотерм преобразуем уравнение Ван-дер-Ваальса (61.2) к виду

(62.1)

Для нахождения критических параметров подставим их значения в уравнение (62.1) в запишем