Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ВСЕ.docx
Скачиваний:
86
Добавлен:
18.02.2016
Размер:
1.29 Mб
Скачать

59. Фазовые переходы 1-ого рода. Уравнение Клайперона-Клаузиуса. Фазовые переходы 2-го рода.

Фазовые переходы 1-ого рода.

Равновесное состояние однородного тела определяется заданием каких-либо двух термодинамических величин, например, p и T. Однако нет никаких оснований утверждать, что при всякой заданной паре значений этих величин тепловому равновесию будет соответствовать именно однородное состояние тела. Может оказаться, что при тепловом равновесии тело разбивается на соприкасающиеся однородные части, находящиеся в различных состояниях.

Такие состояния вещества, которые могут существовать одновременно в равновесии с друг другом, соприкасаясь между собой, называются различными фазами вещества.

Условия равновесия фаз

. (1)

Получим формулу Клайперона-Клаузиуса.

Продифференцируем по температуре условие равенства химических потенциалов:

,

. (2)

Поскольку термодинамический потенциал , для изменения термодинамического потенциалаимеем

, (3)

, , (4)

следовательно,

, (5)

или

-уравнение Клайперона-Клаузиуса. (6)

Фазовые переходы второго рода — фазовые переходы, при которых вторые производные термодинамических потенциалов по давлению и температуре изменяются скачкообразно, тогда как их первые производные изменяются постепенно. Отсюда следует, в частности, что энергия и объём вещества при фазовом переходе второго рода не изменяются, но изменяются его теплоёмкость, сжимаемость, различные восприимчивости и т. д.

60.

Поверхностное натяжение. Свободная поверхностная энергия. Давление под искривленной поверхностью . Капиллярные явления.

Пове́рхностное натяже́ние — термодинамическая характеристика поверхности раздела двух находящихся в равновесии фаз, определяемая работой обратимого изотермокинетического образования единицы площади этой поверхности раздела при условии, что температура, объём системы и химические потенциалы всех компонентов в обеих фазах остаются постоянными.

Поверхностное натяжение имеет двойной физический смысл — энергетический (термодинамический) и силовой (механический). Энергетическое (термодинамическое) определение: поверхностное натяжение — это удельная работа увеличения поверхности при её растяжении при условии постоянства температуры. Силовое (механическое) определение: поверхностное натяжение — это сила, действующая на единицу длины линии, которая ограничивает поверхность жидкости[1].

Сила поверхностного натяжения направлена по касательной к поверхности жидкости, перпендикулярно к участку контура, на который она действует и пропорциональна длине этого участка. Коэффициент пропорциональности — сила, приходящаяся на единицу длины контура — называется коэффициентом поверхностного натяжения. Он измеряется в ньютонах на метр. Но более правильно дать определение поверхностному натяжению, как энергии (Дж) на разрыв единицы поверхности (м²). В этом случае появляется ясный физический смысл понятия поверхностного натяжения.

ПОВЕРХНОСТНАЯ ЭНЕРГИЯ - избыток (по сравнению с объёмными фазами) энергии поверхностного слоя между соприкасающимися фазами, приходящийся на единицу площади разделяющей поверхности. Если последняя делит двухфазную систему А - В на части с объёмами VА и VB, где U - внутр. энергия системы, иА,В - плотности энергии в объёме фаз А и В.

Капилля́рность (от лат. capillaris — волосяной; отсюда происходит встречавшийся ранее в русскоязычной научной литературе термин воло́сность), капиллярный эффект — физическое явление, заключающееся в способности жидкостей изменять уровень в трубках, узких каналах произвольной формы, пористых телах. В поле тяжести (или сил инерции, например при центрифугировании пористых образцов) поднятие жидкости происходит в случаях смачивания каналов жидкостями, например воды в стеклянных трубках, песке, грунте и т. п. Понижение жидкости происходит в трубках и каналах, не смачиваемых жидкостью, например ртуть в стеклянной трубке.

61.

Кинематические харакиеристики молекулярного движения : поперечное сечение, средняя длина свободного пробега, частота столкновений.

Вероятность столкновения движущейся частицы с другими частицами с конкретны мрезультатом такого столкновения характеризуется эффективным поперечным сечением σ

dS=nSdx σ -площадь, перекрытая частицами-мишенями в слое dx

Длина пути< l>, при которой вероятность столкновения с частицами-мишенями становится

равной единице, называется средней длиной свободного пробега

62.

Общее уравнение переноса. Теплопроводность, диффузия и вязкость.

Явления переноса в термодинамически неравновесных системах

В термодинамически неравновесных системах возникают особые необратимые процессы, называемые явлениями переноса, в результате которых происходит пространственный перенос энергии, массы, импульса. К явлениям переноса относятся теплопроводность (обусловлена переносом энергии), диффузия (обусловлена переносом массы) и внутреннее трение (обусловлено переносом импульса). Для простоты ограничимся одномерными явлениями переноса. Систему отсчета выберем так, чтобы ось х была ориентирована в направлении переноса.

1. Теплопроводность. Если в одной области газа средняя кинетическая энергия молекул больше, чем в другой, то с течением времени вследствие постоянных столкновений молекул происходит процесс выравнивания средних кинетических энергий молекул, т. е., иными словами, выравнивание температур.

Перенос энергии в форме теплоты подчиняется закону Фурье:

где jE — плотность теплового потока — величина, определяемая энергией, переносимой в форме теплоты в единицу времени через единичную площадку, перпендикулярную оси х, λ—теплопроводность, — градиент температуры, равный скорости изменения температуры на единицу длины х в направлении нормали к этой площадке. Знак минус показывает, что при теплопроводности энергия переносится в направлении убывания температуры (поэтому знаки jE и – противоположны). Теплопроводность λ численно равна плотности теплового потока при градиенте температуры, равном единице.

Можно показать, что

где сV— удельная теплоемкость газа при постоянном объеме (количество теплоты, необходимое для нагревания 1 кг газа на 1 К при постоянном объеме), r — плотность газа, <v> — средняя скорость теплового движения молекул, <l> — средняя длина свободного пробега.

2. Диффузия. Явление диффузии заключается в том, что происходит самопроизвольное проникновение и перемешивание частиц двух соприкасающихся газов, жидкостей и даже твердых тел; диффузия сводится к обмену масс частиц этих тел, возникает и продолжается, пока существует градиент плотности. Во время становления молекулярно-кинетической теории по вопросу диффузии возникли противоречия. Так как молекулы движутся с огромными скоростями, диффузия должна происходить очень быстро. Если же открыть в комнате сосуд с пахучим веществом, то запах распространяется довольно медленно. Однако противоречия здесь нет. Молекулы при атмосферном давлении обладают малой длиной свободного пробега и, сталкиваясь с другими молекулами, в основном «стоят» на месте.

Явление диффузии для химически однородного газа подчиняется закону Фука:

где jm — плотность потока массы — величина, определяемая массой вещества, диффундирующего в единицу времени через единичную площадку, перпендикулярную оси х, D — диффузия (коэффициент диффузии), dr/dx — градиент плотности, равный скорости изменения плотности на единицу длины х в направлении нормали к этой площадке. Знак минус показывает, что перенос массы происходит в направлении убывания плотности (поэтому знаки jm и dr/dx противоположны). Диффузия D численно равна плотности потока массы при градиенте плотности, равном единице. Согласно кинетической теории газов,

3. Внутреннее трение (вязкость). Механизм возникновения внутреннего трения между параллельными слоями газа (жидкости), движущимися с различными скоростями, заключается в том, что из-за хаотического теплового движения происходит обмен молекулами между слоями, в результате чего импульс слоя, движущегося быстрее, уменьшается, движущегося медленнее — увеличивается, что приводит к торможению слоя, движущегося быстрее, и ускорению слоя, движущегося медленнее.

Согласно формуле (31.1), сила внутреннего трения между двумя слоями газа (жидкости) подчиняется закону Ньютона:

где h — динамическая вязкость (вязкость), dv/dx — градиент скорости, показывающий быстроту изменения скорости в направлении х, перпендикулярном направлению движения слоев, S — площадь, на которую действует сила F.

Взаимодействие двух слоев согласно второму закону Ньютона можно рассматривать как процесс, при котором от одного слоя к другому в единицу времени передается импульс, по модулю равный действующей силе. Тогда выражение (48.5) можно представить в виде

где jp — плотность потока импульса — величина, определяемая полным импульсом, переносимым в единицу времени в положительном направлении оси х через единичную площадку, перпендикулярную оси х, — градиент скорости. Знак минус указывает, что импульс переносится в направлении убывания скорости (поэтому знаки jр и противоположны).

Динамическая вязкость h численно равна плотности потока импульса при градиенте скорости, равном единице; она вычисляется по формуле

63.

Строение кристаллов. Точечные дефекты в кристаллах. Краевые и винтовые дислокации.

СТРОЕНИЕ КРИСТАЛЛА, упорядоченное расположение атомов, соединенных ХИМИЧЕСКИМИ СВЯЗЯМИ, многократное повторяемое. За счет этой упорядоченности, иногда асимметричной, физические свойства кристалла, такие как проводимость и прочность, закономерным образом изменяются в зависимости от того, по какой оси их измеряют. В этом отношении одиночные кристаллы (монокристаллы) отличаются от некристаллических (аморфных) и поликристаллических веществ, у которых физические свойства остаются неизменными (из-за полного смешения) либо меняются нерегулярным образом.

Нульмерные (точечные) дефекты

К нульмерным (или точечным) дефектам кристалла относят все дефекты, которые связаны со смещением или заменой небольшой группы атомов (собственные точечные дефекты), а также с примесями. Они возникают при нагреве, легировании, в процессе роста кристалла и в результате радиационного облучения. Могут вноситься также в результате имплантации. Свойства таких дефектов и механизмы их образования наиболее изучены, включая движение, взаимодействие, аннигиляцию, испарение.

Вакансия — свободный, незанятый атомом, узел кристаллической решетки.

Собственный межузельный атом — атом основного элемента, находящийся в междоузельном положении элементарной ячейки.

Примесный атом замещения — замена атома одного типа, атомом другого типа в узле кристаллической решетки. В позициях замещения могут находиться атомы, которые по своим размерам и электронным свойствам относительно слабо отличаются от атомов основы.

Примесный атом внедрения — атом примеси располагается в междоузлии кристаллической решетки. В металлах примесями внедрения обычно являются водород, углерод, азот и кислород. В полупроводниках — это примеси, создающие глубокие энергетические уровни в запрещенной зоне, например, медь и золото в кремнии.

Дислока́ция — линейный дефект, или нарушение, кристаллической решётки твёрдого тела. Наличие дислокаций существенно влияет на механические и другие физические свойства твердого тела.

Выделяют два основных типа дислокаций: краевые и винтовые. Дислокации смешанного типа являются комбинацией указанных двух типов.

Образование краевой дислокации можно представить как результат удаления одной полуплоскости из кристаллической решетки в середине кристалла. В этом случае окружающие дефект плоскости уже не будут прямыми, однако они будут огибать границу уничтоженной полуплоскости так, что на гранях кристалла структура решетки не будет нарушена и дефект не будет виден. Линия, отделяющая дефектную область кристалла от бездефектной, называется линией дислокации. Простейшая наглядная модель краевой дислокации — книга, у которой от одной из внутренних страниц оторвана часть. Тогда, если страницы книги уподобить атомным плоскостям, то край оторванной части страницы моделирует линию дислокации.

64.

Теплоемкость твердых тел.

В качестве модели твердого тела рассмотрим правильно построенную кристаллическую решетку, в узлах которой частицы (атомы, ионы, молекулы), принимаемые за материальные точки, колеблются около своих положений равновесия — узлов решетки — в трех взаимно перпендикулярных направлениях. Таким образом, каждой составляющей кристаллическую решетку частице приписывается три колебательных степени свободы, каждая из которых, согласно закону равнораспределения энергии по степеням свободы, обладает энергией kT.

Внутренняя энергия моля твердого тела

где NA — постоянная Авогадро; NAk=R (R — молярная газовая постоянная). Молярная теплоемкость твердого тела

т. е. молярная (атомная) теплоемкость химически простых тел в кристаллическом

состоянии одинакова (равна 3R) и не зависит от температуры. Этот закон был эмпирически получен французскими учеными П. Дюлонгом (1785—1838) и Л. Пти (1791—1820) и носит название закона Дюлонга и Пти.

Если твердое тело является химическим соединением (например, NaCl), то число частиц в моле не равно постоянной Авогадро, а равно nNA, где n — число атомов в молекуле (для NaCl число частиц в моле равно 2NA, так, в одном моле NaCl содержится NA атомов Na и NA атомов Cl). Таким образом, молярная теплоемкость твердых химических соединений

т. е. равна сумме атомных теплоемкостей элементов, составляющих это соединение.