Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Материалы_МСС_ зачет_ПГС.doc
Скачиваний:
24
Добавлен:
21.12.2018
Размер:
1.62 Mб
Скачать

5.6 Методы и погрешности измерения

5.6.1 Методы измерения

При измерениях используют разнообразные методы (ГОСТ 16263 – 70), представляющие собой совокупность приемов использования различных физических принципов и средств.

При измерительном контроле линейных и угловых размеров применяют главным образом следующие методы:

- прямые (искомое значение – непосредственно из опытных данных);

- косвенные (на основании зависимости между искомой и полученной при прямом измерении величинами);

- абсолютные (прямые измерения основных величин и с использованием физических констант);

- относительные (по отношению к одноименной величине, принимаемой за исходную).

Из этих методов чаще используются непосредственная оценка и сравнение с мерой, причем последний доминирует при точных измерениях сравнительно больших размеров. Для грубых измерений используют штангенинструменты, работающие по методу совпадений.

5.6.2 Погрешности измерений

Понятиям погрешность измерения и неопределенность измерений дано толкование в нормативном документе «Руководство для выражения неопределенности в измерениях. Термины и определения», разработанном МОМВ с участием представителей ИСО, МЭК, МОЗМ.

Под погрешностью измерения как характеристикой точности понимают отклонение результата измерения от истинного значения измеряемой величины. Точность измерения – свойство качества измерения, отражающее близость их результатов к истинному значению измеряемой величины. Количественно точность измерения может быть выражена величиной, обратной погрешности измерения, ее называют мерой точности.

Неопределенность измерений – это параметр, характеризующий рассеяние результатов измерений в серии вследствие влияния случайных и неисключенных систематических погрешностей в виде оценок средней квадратической погрешности или доверительных границ погрешности измерений.

5.7 Универсальные средства технических измерений

5.7.1 Механические измерительные приборы и инструменты

Механические измерительные приборы и инструменты подразделяют на пять разновидностей: бесшкальные инструменты; штангенинструменты; измерительные головки; микрометрические инструменты; зубчато-рычажные приборы.

Бесшкальные инструменты. К ним относятся лекальные и поверочные линейки (ГОСТ 8026 – 75), предназначенные для контроля отклонений от прямолинейности на просвет или посредством щупа с собственным отклонением от прямолинейности от 0,6 (класс 0; 50 мм) до 3 мкм (класс 1; 500 мм); синусные линейки (ГОСТ 4046 – 80) для косвенных измерений наружных углов до 45º с погрешностью от +5" до 15"; щупы (ГОСТ 882 – 75) для контроля зазоров по вхождению лезвий разных толщин; угольники поверочные 90º (ГОСТ 3749 – 77) для контроля прямых углов на просвет; поверочные плиты (ГОСТ 10905 – 86) для контроля от плоскостности по краске; образцы шероховатости поверхности (ГОСТ 9378 – 75) для визуального контроля шероховатости поверхности деталей.

Штангенинструменты. Штангенинструмент представляет собой две измерительные поверхности (губки), между которыми устанавливается размер. Одна из губок (базовая) составляет единое целое с линейкой (штангой), а другая соединена с двигающейся по линейке рамкой. На линейке наносится шкала с ценой деления 1 мм, на рамке – нониус. Выпускают несколько видов и типоразмеров с точностью отсчета 0,05 и 0,1 мм.

Штангенинструменты разделяют на штангенциркули для измерений наружных и внутренних размеров; штангенглубиномер для измерения глубин пазов и высот выступов; штангезубомер для измерений толщины зуба шестерни; угломер с нониусом для измерений наружных и внутренних углов.

Измерительные головки. Под измерительной головкой понимают механические отсчетные устройства, преобразующие малые перемещения измерительного наконечника в большие перемещения стрелки и имеющие шкалу, по которой отсчитывают величины перемещения наконечника.

В качестве отдельного прибора головки не используются, при измерении их устанавливают в универсальные приспособления – штативы и стойки.

По принципу действия измерительные головки подразделяют на пружинные (ГОСТ 6933 – 81); рычажно-зубчатые (ГОСТ 18883 – 73); рычажные (ГОСТ 9696 – 82).

В пружинной измерительной головке передаточным механизмом является упругий элемент (пружина плоская или свернутая, торсионный вал). Стандартизованы измерительные головки с механизмом в виде свернутой пружины. На базе пружинного механизма головки изготавливают четырех видов: головки пружинные (микрокаторы); головки измерительные пружинно-оптические (оптикаторы); головки измерительные пружинные малогабаритные (микаторы) и головки измерительные рычажно-пружинные (миникаторы).

К рычажно-зубчатым головкам относят:

- головки с зубчатым механизмом (индикатор часового типа);

- рычажно-зубчатые индикаторы с изменяемым положением измерительного рычага относительно корпуса для измерения отклонений формы и расположения;

- многооборотный индикатор для относительных измерений наружных размеров;

- скобы с отсчетным устройством – рычажная и индикаторная скоба;

- индикаторный глубиномер и нутромеры с ценами делениями 1 и 2 мкм;

- устройство информационно-измерительное цифровое со струнным преобразователем для измерения линейных размеров.

Микрометрические инструменты. У микрометров измерительным элементом служит шпиндель, имеющий резьбу с очень точным шагом. Осевое перемещение шпинделя для полных оборотов отсчитывается при помощи штрихов, нанесенных на стебле, а для отсчета долей оборотов служат радиальные штрихи, нанесенные на барабане.

Шаг резьбы шпинделя равен 0,5 или 1 мм. У микрометров с шагом 0,5 мм барабан имеет 50 штриховых делений, с шагом 1 мм – 100 делений, чтобы можно было отсчитать 0,01 мм. Длина шпинделя принимается из условия получения длины измерения по шкале, равной 25 мм.

Барабан может переставляться для установки нулевого отсчета. Чтобы выполнять измерение с одинаковым усилием измерительный шпиндель вращается посредством подпружиненного храповика или фрикционной муфты (трещотки). Микрометрический измерительный инструмент может быть встроен в различного вида скобы, измерительные приборы, приспособления.

К микрометрическим инструментам относят ручные микрометры, микрометрические глубиномеры и нутромеры (ГОСТ 6507 – 90; ГОСТ 4380 – 86; ГОСТ 7470 – 78); головки микрометрические (ГОСТ 6507 – 90); микрометры рычажные (ГОСТ 4381 – 87) и др.

Микрометры для наружных измерений устроены на несущей конструкции в виде скобы, размер которой соответствует измеряемой длине и изменяется ступенями через 25 мм.

Микрометры для внутренних измерений выполняют с губками или в виде штихмасов. Штихмасы имеют на обоих концах закругленные измерительные поверхности, создающие точечный контакт с поверхностью отверстия (паза). Они комплектуются удлинителями (от 25 мм) с интервалом 25 мм, поэтому имеют большие пределы измерения (о 100 до 500 мм). Микрометрические глубиномеры используются для измерения глубин и уступов. У них микрометрическая головка установлена на траверсе, контактирующая плоская поверхность которой расположена перпендикулярно оси головки.