Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Voprosy_k_ekzamenu_po_fiziologii_TsNS-1.doc
Скачиваний:
15
Добавлен:
15.04.2019
Размер:
412.67 Кб
Скачать

18) Строение скелетных мышц. Теория скользящих нитей. Нервно-мышечный синапс. Электромеханической сопряжение.

Строение скелетных мышц. Каждая мышца состоит из параллельных пучков поперечно-полосатых мышечных волокон. Каждый пучок одет оболочкой. И вся мышца снаружи покрыта тонкой соединительнотканной оболочкой, защищающей мышечную ткань. Целостное мышечное волокно сокращается в результате стимуляции моторным нервом. Каждое мышечное волокно также имеет снаружи тонкую оболочку, а внутри него находятся многочисленные тонкие сократительные нити - миофибриллы и большое количество ядер. Миофибриллы, с свою очередь, состоят из тончайших нитей двух типов - толстых (белковые молекулы миозина) и тонких (белок актина). Так как они образованы различными видами белка, под микроскопом видны чередующиеся темные и светлые полосы. Отсюда и название скелетной мышечной ткани - поперечно-полосатая. У человека скелетные мышцы состоят из волокон двух типов - красных и белых. Они различаются составом и количеством миофибрилл, а главное - особенностями сокращения. Так называемые белые мышечные волокна сокращаются быстро, но быстро и устают; красные волокна сокращаются медленнее, но могут оставаться в сокращенном состоянии долго. В зависимости от функции мышц в них преобладают те или иные типы волокон. Мышцы выполняют большую работу, поэтому они богаты кровеносными сосудами, по которым кровь снабжает их кислородом, питательными веществами, выносит продукты обмена веществ. Мышцы крепятся к костям с помощью нерастяжимых сухожилий, которые срастаются с надкостницей. Обычно мышцы одним концом крепятся выше, а другим ниже сустава. При таком креплении сокращение мышц приводит в движение кости в суставах.Типичная скелетная мышца прикреплена как минимум к двум костям. Скелетные мышцы обеспечивают произвольные движения. К скелетной мышце подходят нервы, которые несут сигналы от центральной нервной системы, вызывающие мышечное сокращение; по ним также обратно в нервную систему передается сенсорная информация о степени растяжения или сокращения мышцы. Скелетные мышцы редко бывают полностью расслаблены; даже если движения в суставе нет, в мышце все равно поддерживается состояние слабого сокращения (мышечный тонус).   «Теория скользящих нитей» - концепция, объясняющая механизм сокращения миофибриллы. Разработана независимо друг от друга Хью Эзмором Хаксли и Сэром Андру Филдингом Хаксли      Согласно данной концепции, укорочение саркомера (части миофибриллы) во время сокращения происходит благодаря активному скольжению актиновых нитей относительно миозиновых нитей.между актином и миозином образуются так называемые поперечные мостики. Боковые мостики миозина цепляются за активные центры актина и сдвигают актин — происходит сокращение. Далее мостик отцепляется и прицепляется к следующему центру, передвигаясь дальше.При сокращении мышца укорачивается, но мы не чувствуем напряжение — мышца расслаблена — это изотоническое сокращение. Постоянная длина, но меняется степень напряжения в мышце — изометрическое сокращение. Напряжение мышцы с изменением её длины — эксцентрическое сокращение. Электромеханической сопряжение — переход электрического движения в механическое, в результате чего происходит сокращение мышц. Нервно-мышечный синапс — эффекторное нервное окончание на скелетном мышечном волокне. При произвольной внутренней команде сокращение мышцы человека начинается примерно через 0.05 с (50 мс). За это время моторная команда передается от коры больших полушарий к мотонейронам спинного мозга и по двигательным волокнам к мышце. Подойдя к мышце, процесс возбуждения должен с помощью медиатора преодолеть нервно-мышечный синапс, что занимает примерно 0.5 мс. Медиатором здесь является ацетилхолин, который содержится в синоптических пузырьках в пресинаптической части синапса. Нервный импульс вызывает перемещение синаптических пузырьков к пресинаптической мембране, их опорожнение и выход медиатора в синаптическую щель Действие ацетил-холина на постсинаптическую мембрану чрезвычайно кратковременно, после чего он разрушаетсся ацетилхолинэстеразой на уксусную кислоту и холин. По мере расходо-нания запасы ацетил-холина постоянно пополняются путем его синтезирования в пресинаптической мембране. Однако, при очень частой и длительной импульсации мотонейрона расход ацетилхолини превышает его пополнение, а также снижается чувствительность постсинаптической мембраны к его действию, В результате чего нарушается проведение возбуждения через нервно-мышечный синапс. Выделившийся в синаптическую щель медиатор прикрепляется к рецепторам постсинаптической мембраны и вызывает в ней явления деполяризации. Небольшое подпороговое раздражение вызывает лишь местное возбуждение или небольшой амплитуды потенциал концевой пластинки (ПКП). При достаточной частоте нервных импульсов ПКП достигает порогового значения и на мышечной мембране развивается мышечный потенциал действия. Он распространяется вдоль по поверхности мышечного волокна и заходит в поперечные трубочки внутрь волокна. Повышая проницаемость клеточных мембран, потенциал действия вызывает выход из цистерн и трубочек саркоплаэматического ретикулума ионов Са2+, которые проникают в миофибриллы, к центрам связывания этих ионов на молекулах актина. Под влиянием Са2+ длинные молекулы тропомиозина проворачиваются вдоль оси и скрываются в желобки между сферическими молекулами актина, открывая участки прикрепления головок миозина к актину. Тем самым между актином и миозином образуются поперечные мостики. При этом головки миозина совершают гребковые движения, обеспечивая скольжение нитей актина вдоль нитей миозина с обоих концов саркомера к его центру, т.е. механическую реакцию мышечного волокна. Для дальнейшего скольжения сократительных белков друг относительно друга мостики между актином и миозином должны распадаться и вновь образовываться на следующем центре связывания Са2+. Такой процесс происходит в результате активации в этот момент молекул миозина. Миозин приобретает свойства фермента АТФ-азы, который вызывает распад АТФ. Выделившаяся при распаде АТФ энергия приводит к разрушению имеющихся мостиков и образованию в присутствии Са2+новых мостиков на следующем участке актиновой нити. В результате повторения подобных процессов многократного образования и распада мостиков сокращается длина отдельных саркомеров и всего мышечного волокна в целом. Максимальная концентрация кальция в миофибрилле достигается уже через 3 мс после появления потенциала действия в поперечных трубочках, а максимальное напряжение мышечного волокна — через 20 мс. Весь процесс от появления мышечного потенциала действия до сокращения мышечного волокна называется электромеханической связью (или электромеханическим сопряжением). В результате сокращения мышечного волокна актин и миозин более равномерно распределяются внутри саркомера, и исчезает видимая под микроскопом поперечная исчерченность мышцы. Расслабление мышечного волокна связано с работой особого механизма — «кальциевого насоса», который обеспечивает откачку ионов Са2+ из миофибрилл обратно в трубочки саркоплазматического ретикулума. На это также тратится энергия АТФ.

Двигательная единица. Одиночное и тетаническое сокращение мышечного волокна. Утомление. Вегетативная регуляция работы скелетных мышц.

19.Двигательная единица.Одиночное и тетаническое сокращение мышечного волокна.Утомление.Вгетативная регуляция работы скелетных мышц Двигательные единицы Двигательные единицы - периферические мотонейроны и иннервируемые ими мышечные волокна ). Простейшим элементом двигательной функции служит двигательная единица - спинальный мотонейрон и группа иннервируемых им мышечных волокон. В разных мышцах количество двигательных единиц значительно отличается. Различно и среднее количество мышечных волокон в двигательной единице (иннервационное число): в латеральной прямой мышце глаза их не больше 25, в медиальной головке икроножной мышцы - 1600-1700. Мотонейроны периферические (альфа- и гамма-мотонейроны)Периферические мотонейроны подразделяются на альфа-мотонейроны и гамма-мотонейроны .Меньшие по размеру гамма-мотонейроны иннервируют интрафузальные мышечные волокна . Активация гамма-мотонейронов увеличивает растяжение мышечных веретен, тем самым облегчая сухожильные и другие рефлексы, замыкающиеся через альфа-мотонейроны. Каждую мышцу иннервирует несколько сотен альфа-мотонейронов. В свою очередь, каждый альфа-мотонейрон иннервирует множество мышечных волокон - около двадцати в наружных мышцах глаза и сотни в мышцах конечностей и туловища . В нервно-мышечных синапсах выделяется ацетилхолин .Аксоны периферических мотонейронов идут в составе черепных нервов и передних корешков спинного мозга . На уровне межпозвоночных отверстий передние корешки и задние корешки сливаются, образуя спинномозговые нервы . Несколько соседних спинномозговых нервов образуют сплетение, а затем разветвляются на периферические нервы . Последние тоже неоднократно разветвляются и иннервируют несколько мышц. Наконец, аксон каждого альфа-мотонейрона образует многочисленные разветвления, иннервируя многие мышечные волокна. Каждый альфа-мотонейрон получает прямые возбуждающие глутаматергические входы от корковых мотонейронов и от чувствительных нейронов , иннервирующих мышечные веретена . Возбуждающие влияния поступают также к альфа- и гамма-мотонейронам от двигательных ядер ствола мозга и вставочных нейронов спинного мозга - как по прямым путям, так и с переключениями. Прямое постсинаптическое торможение альфа-мотонейронов осуществляют клетки Реншоу - вставочные глицинергические нейроны . Непрямое пресинаптическое торможение альфа-мотонейронов и непрямое пресинаптическое торможение гамма-мотонейронов обеспечивают другие нейроны , образующие ГАМКергические синапсы на нейронах задних рогов . Тормозное действие на альфа- и гамма-мотонейроны оказывают и другие вставочные нейроны спинного мозга, а также двигательные ядра ствола мозга . Если преобладают возбуждающие входы, группа периферических мотонейронов активируется. Вначале возбуждаются мелкие мотонейроны. По мере того как сила сокращения мышцы нарастает, частота их разрядов нарастает и вовлекаются крупные мотонейроны. При максимальном сокращении мышцы возбуждена вся соответствующая группа мотонейронов.

При единичном надпороговом раздражении двигательного нерва или самой мышцы возбуждение мышечного волокна сопровождается одиночным сокращением. Эта форма механической реакции состоит из 3 фаз: латентного или скрытого периода, фазы сокращения и фазы расслабления. Самой короткой фазой является скрытый период, когда в мышце происходит электромеханическая передача. Фаза расслабления обычно в 1.5-2 раза более продолжительна, чем фаза сокращения, а при утомлении затягивается на значительное время. Если интервалы между нервными импульсами короче, чем длительность одиночного сокращения, то возникает явление суперпозиции — наложение механических эффектов мышечного волокна друг на друга и наблюдается сложная форма сокращения — тетанус. Различают 2 формы тетануса — зубчатый тетанус, возникающий при более редком раздражении, когда происходит попадание каждого следующего нервного импульса в фазу расслабления отдельных одиночных сокращений, и сплошной или гладкий тетанус, возникающий при более частом раздражении, когда каждый следующий импульс попадает в фазу сокращения (рис. 2). Таким образом, (в некоторых границах) между частотой импульсов возбуждения и амплитудой сокращения волокон ДЕ существует определенное соотношение: при небольшой частоте (например, 5-8 имп. в 1 с) возникают одиночные сокращения, при увеличении частоты (15-20 имп. в 1 с) — зубчатый тетанус, при дальнейшем нарастании частоты (25-60 имп. в 1с) -гладкий тетанус. Одиночное сокращение — более слабое и менее утомительное, чем тетаническое. Зато тетанус обеспечивает в несколько раз более мощное, хотя и кратковременное сокращение мышечного волокна. Сокращение целой мышцы зависит от формы сокращения отдельных ДЕ и их координации во времени. При обеспечении длительной, но не очень интенсивной работы, отдельные ДЕ сокращаются попеременно (рис. 3), поддерживая общее напряжение мышцы на заданном уровне (например, при беге на длинные и сверхдлинные дистанции). При этом отдельные ДЕ могут развивать как одиночные, так и тетанические сокращения, что зависит от частоты нервных импульсов. Утомление в этом случае развивается медленно, так как, работая по очереди, ДЕ в промежутках между активацией успевают восстанавливаться. Однако для мощного кратковременного усилия (например, поднятия штанги) требуется синхронизация активности отдельных ДЕ, т. е. одновременное возбуждение практически всех ДЕ. Это, в свою очередь, требует одновременной активации соответствующих нервных центров и достигается в результате длительной тренировки. При этом осуществляется мощное и весьма утомительное тетаническое сокращение

20. Мышечные рецепторы.Регуляция работы мышечного веретена.Сухожильные органы Гольджи. • Мышечные веретена — рецепторы растяжения мышц, бывают двух типов: o с ядерной сумкой o с ядерной цепочкой • Сухожильный орган Гольджи — рецепторы сокращения мышц. При сокращении мышцы сухожилие растягивается и его волокна пережимают рецепторное окончание, активируя его. Нервно-мышечное веретено — сложный рецептор, который включает видоизмененные мышечные клетки, афферентные и эфферентные нервные отростки и контролирует как скорость, так и степень сокращения и растяжение скелетных мышц. Строение мышечных веретен В каждой поперечнополосатой мышце содержатся мышечные веретена. Мышечные веретена, в соответствии с названием, имеют форму веретена длиной несколько миллиметров и диаметром несколько десятых долей миллиметра. Веретена расположены в толще мышцы параллельно обычным мышечным волокнам. Мышечное веретено имеет соединительнотканную капсулу. Капсула обеспечивает механическую защиту элементов веретена, расположенных в полости капсулы, регулирует химическую жидкую среду этих элементов и этим обеспечивает их взаимодействие. В полости капсулы мышечного веретена расположено несколько особых мышечных волокон, способных к сокращению, но отличающихся от обычных мышечных волокон мышцы как по строению, так и по функции. Эти мышечные волокна, расположенные внутри капсулы, назвали интрафузальными мышечными волокнами (лат.: intra — внутри; fusus — веретено); обычные мышечные волокна называются экстрафузальными мышечными волокнами (лат.: extra — вне, снаружи; fusus — веретено). Интрафузальные мышечные волокна тоньше и короче экстрафузальных мышечных волокон. Выделяют два главных типа интрафузалъных мышечных волокон. Один тип интрафузального мышечного волокона — волокно с ядерной сумкой (bursa nuclearis)Это волокно имеет в средней части около сотни компактно собранных клеточных ядер. Утолщенная средняя часть такого интрафузального волокна представляет собой сумку с ядрами. Именно потому эти волокна назвали сумчато-ядерными. Другой тип волокна, волокно с ядерной цепочкой (vinculun nucleare) , имеет ядра распределенные в виде цепочки по длинной оси интрафузального волокна. Именно потому эти волокна называют цепочно-ядерными интрафузальными мышечными волокнами. Цепочечно-ядерные волокна вдвое тоньше и почти вдвое короче, чем сумчато-ядерные волокна.

20!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! Иннервация мышечных веретен Афферентная иннервация В полость каждого мышечного веретена на уровне ядерной зоны проникают нервные волокна и кровеносные сосуды. Среди нервных волокон одно — толстое миелинизированное нервное волокно. Внутри мышечного веретена одиночное крупное волокно ветвится и посылает терминали дендритов к каждому интрафузальному мышечному волокну любых разновидностей. Конечные нервные ветви обвиваются вокруг средних частей интрафузальных волокон, образуя так называемое аннулоспиральное окончание (лат.: anulus — колечко, завиток; anulo- в форме кольца). Афферентные нервные волокна, образующие аннулоспиральные окончания, принадлежат к типу Iа. Их называют первичными афферентными волокнами мышечных веретен. В соответствии с этим аннулоспиральные нервные окончания носят название первичных чувствительных (сенсорных) окончаний. Полагают, что каждое мышечное веретено иннервируется только одним афферентным нервным волокном типа Iа. Большинство мышечных веретен иннервируются также одним или несколькими афферентными волокнами типа II. Они могут иннервировать все разновидности интрафузальных мышечных волокон, но главным образом иннервируют цепочечноядерные интрафузальные мышечные волокна. Терминали афферентных волокон типа II располагаются в краевых участках интрафузальных мышечных волокон к периферии от аннулоспиральных окончаний. Такие структуры называют вторичными сенсорными окончаниями. Они могут либо обвивать цепочечно-ядерное интрафузальное волокно в виде нерегулярной спиральной пружины, или образовывать множественные разветвления в сумчато-ядерном волокне, называемые «гроздевидными окончаниями». В отличие от волокон Iа, волокна группы II часто иннервируют два или несколько мышечных веретен. Эфферентная иннервация Как экстрафузальные, так и интрафузальные мышечные волокна иннервируются эфферентными нервными волокнами, аксонами мотонейронов спинного мозга. Это разные мотонейроны. Экстрафузальные волокна иннервируются α-мотонейронами, а интрафузальные — γ-мотонейронами. Тела γ-мотонейронов, посылающих по своим аксонам (фузимоторные нервные волокна) управляющие сигналы к мышечным веретенам, значительно меньше по размерам, чем тела α-мотонейронов, управляющих экстрафузальными мышечными волокнами. Фузимоторные нервные волокна значительно тоньше эфферентных волокон, управляющих сокращениями мышц. Фузимоторные нервные волокна называют γ-(эфферентными) нервными волокнами. В пределах мышцы γ-волокна разветвляются и иннервируют несколько мышечных веретен. Внутри каждого веретена γ-волокна иннервируют несколько интрафузальных мышечных волокон. γ-волокна образуют несколько типов окончаний на периферических (полярных) участках интрафузальных мышечных волокон. Эти окончания называют γ-концевыми пластинками, если они локализованы на сумчато-ядерных интрафузальных мышечных волокнах, а также γ-кустовидными нервными окончаниями, если они локализованы на цепочечноядерных интрафузальных мышечных волокнах. γ-концевые пластинки подобны обычным концевыми пластинкам, расположенным на экстрафузальных мышечных волокнах). γ-кустовидные окончания представляют собой длинные тонкие структуры, разветвленные в виде диффузной сети. Каждое γ-волокно образует только один тип терминалей: либо только кустовидные окончания, либо только концевые пластинки. Приходящие по эфферентным нервным окончаниям импульсы вызывают сокращение мышечных волокон, что ведёт к деформации афферентных окончаний и приводит к возникновению нервных импульсов, частота которых пропорциональна скорость изменения длины мышечных волокон и величине этого изменения.

Сухожильный орган Гольджи (нервно-сухожильное веретено) — рецепторный орган, располагающийся в местах соединения мышечных волокон с коллагеновыми пучками сухожилий. Весь орган окружён тонкой соединительнотканной капсулой. Нервное волокно, подходящее к веретену утрачивает миелиновый слой и, распадаясь на терминальные ветви, проходит между пучками коллагеновых волокон сухожилия. Сокращаясь, мышца растягивает сухожилие. Это вызывает возбуждение нернвых окончаний чувствительных нейронов спинного мозга. Они возбуждают тормозные нейроны спинного мозга, которые тормозят соответствующие двигательные нейроны, что предотвращает перерастяжения мышцы. Известно, что порог возбуждения рецептеров сухожильного органа Гольджи при механическом растяжении мышцы выше, чем аналогичный порог возбуждения мышечных веретен. Это позволяет мышце сокращаться без всяких помех до определенного предела

Моно- и полисинаптические рефлексы спинного мозга. Миотатический и обратный миотатический рефлекс. 21. моно и полисинаптические рефлексы спинного мозга. Миотатический и обратный миотатический рефлекс. Спинной мозг — часть центральной нервной системы, расположенная в позвоночном канале. Рефлекс (от лат reflexus – отраженный) - стереотипная реакция организма на определенное воздействие, проходящая с участием нервной системы. Рефлексы существуют у многоклеточных живых организмов, обладающих нервной системой. По степени сложности нейронной организации рефлекторные дуг различают моносинаптические, дуги которых состоят из афферентного и эфферентного нейронов (например, коленный), и полисинаптические, дуги которых содержат также 1 или несколько промежуточных нейронов и имеют 2 или несколько синаптических переключений (например, флексорный). Существуют и более сложные рефлекторные дуги, включающие один или неск. вставочных нейронов между афферентной и эфферентной частями рефлекса. Примером простейшего полисинаптического (более чем с одним синапсом) рефлекса может служить сухожильный рефлекс. Сенсорный концевой орган — тельца Гольджи — находится в сухожилиях. Увеличение нагрузки на сухожилие, вызываемое обычно сокращением прикрепленной к нему мышцы, и есть возбуждающий раздражитель, к-рый приводит к растяжению телец Гольджи и возникновению в них импульсной активности, распростр. по соотв. афферентному волокну. Идущий от сухожильного сенсорного концевого органа афферент заканчивается на вставочном нейроне в спинном мозге. Этот вставочный нейрон оказывает тормозящее действие на α-мотонейрон, понижая активность в его эфферентном аксоне. Поскольку этот аксон возвращается к мышце, прикрепленной к растянутому сухожилию, мышца расслабляется и нагрузка на сухожилие снижается. Рефлекс растяжения мышцы и сухожильный рефлекс работают во взаимодействии, обеспечивая базисный механизм быстрого регулирования степени сокращения мышцы. Эти Р. полезны для быстрых приспособлений к изменению положения ноги, когда чел. приходится идти по неровной почве. Разумеется, в локомоции участвуют и др. полисинаптические спинальные Р. Эти Р. включают гораздо больше вставочных нейронов в структуру рефлекторной дуги. Неврологическую основу этих сложных Р. образуют дивергентные (от одного нейрона к неск.) и конвергентные (от неск. нейронов к одному) связи вставочных нейронов. Моносинаптические и полисинаптические спинномозговые Р. образуют базовый механизм поддержания и приспособления позы. Моторные системы головного мозга влияют на спинномозговые Р. через входные цепи, идущие к вставочным нейронам и γ-мотонейронам. Т. о., изменения спинномозговых Р. могут указывать на патологию в моторных системах головного мозга. Примером этого может служить гиперрефлексия, связанная с травмой латеральных спинномозговых двигательных путей или с повреждением моторных областей лобной доли. Простейшим рефлексом яв-ся миотатический рефлекс, или рефлекс растяжения мышцы. Этот рефлекс можно вызвать у любой скелетной мышцы, хотя самый известный его пример — коленный рефлекс. Анат. основу миотатического рефлекса составляет моносинаптическая (с одним синапсом) рефлекторная дуга. Она включает сенсорный концевой орган, сенсорное нервное волокно с его клеточным телом в ганглии заднего корешка, α-мотонейрон, на к-ром сенсорный аксон образует синапс, и аксон этого α-мотонейрона, возвращающийся к мышце, от к-рой приходит сенсорное волокно. Сенсорным концевым органом в рефлексе растяжения мышцы служит мышечное веретено. Мышечное веретено имеет мышечные окончания, наз. интрафузальными волокнами, и центральную, немышечную область, связанную с окончанием афферентного нерва. Интрафузальные волокна иннервируются γ-мотонейронами передних корешков спинного мозга. Высшие центры головного мозга могут оказывать влияние на рефлекс растяжения мышцы посредством модуляции активности γ-мотонейронов. Этот рефлекс вызывается растяжением мышцы, что приводит к увеличению длины мышечного веретена и, вследствие этого, к повышению частоты генерирования потенциала действия в сенсорном (афферентном) нервном волокне. Повышенная активность в афферентном волокне усиливает разряд целевого γ-мотонейрона, что вызывает сокращение экстрафузальных волокон мышцы, от к-рой приходит афферентный сигнал. Когда экстрафузальные волокна сокращаются, мышца укорачивается и активность в афферентных волокнах понижается

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]