Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
shp.doc
Скачиваний:
48
Добавлен:
22.04.2019
Размер:
1.83 Mб
Скачать

5. Изобразите формулы двух мицелл гидрозоля с, полученного из растворов веществ а и в в случае избытка вещества а или в. А: k2CrO4, b: AgNo3, c: Ag2CrO4

K2CrO4 + 2AgNO3 = Ag2CrO4 + 2KNO3

Случай избытка вещества А: {m[Ag2CrO4]nCrO42-·2(n-x)K+}2x-·2xK+

Случай избытка вещества В: {m[Ag2CrO4]nAg+(n-x)NO3-}x+·xNO3-

6. К гидрозолю AgCl, стабилизированному NaBr, добавляют а)NaNO3, б) CsNO3 , в) Al(NO3)3. Обозначьте тип каждого электролита по отношению к данному золю. Изобразите графически изменение ζ-потенциала от концентрации каждого электролита на одном рисунке. Укажите причины различия зависимостей.

Е сли добавленный электролит содержит ионы большего знака, происходит ионный обмен и при наличии сильных электростатических и адсорбционных сил притяжения ионов к поверхности, может происходить изменение знака ζ-потенциала, т.е. к перезарядка частиц золя.

При добавлении неиндифферентных электролитов, содержащих ионы одинакового знака с потенциалопределяющими ионами, сначала происходит увеличение ζ-потенциала (вместе с потенциалом поверхности), а затем его уменьшение из-за сжатия диффузного слоя.

Билет 3

1. Седиментационный анализ суспензий и эмульсий.

Седиментацио́нный ана́лиз — совокупность методов определения размеров частиц в дисперсных системах и молекулярной массы макромолекул в растворах полимеров по скорости седиментации в условиях седиментационно-диффузного равновесия.

Оседание частиц шарообразной формы в жидкости происходит под действием силы тяжести - веса частицы, величина которого с учётом гидростатической поправки равна:

где r- радиус частицы, D - плотность вещества частицы, d - плотность жидкости, g -ускорение силы тяжести.

Оседанию частиц противодействует сила вязкого сопротивления среды - жидкости, определяемая законом Стокса:

где r- радиус сферической частицы, η - вязкость жидкости, υ - скорость движения частицы.

Вначале, под действием постоянной силы Р частица движется равноускоренно, т.к. сила Р больше силы f. По мере увеличения скорости растет сила вязкого сопротивления среды f. К некоторому моменту времени эти силы сравниваются, вес частиц уравновешивается противоположно направленной силой f и с этого момента частица будет двигаться с постоянной скоростью (υ) .Из равенства P=f

можно установить завис-ть между скор оседания частицы и радиусом

или , где - велич постоянная для данных условий опыта.

Cкорость седиментации определяется размером частиц, разностью плотностей частиц и среды, а также вязкостью среды. Зная скорость, можно определить радиус частиц. На этом основан седиментационный анализ размеров частиц в порошках, суспензиях, эмульсиях, различных взвесях и т. д.

2. Поверхностная активность. Экспериментальное определение, изменение в гомологических рядах, работа адсорбции.

Величина , соответствующая бесконечно малой концентрации вещества c, взятая с обратным знаком и полученная при постоянных значениях температуры и давления, называется поверхностной активностью (g): .

Поверхностная активность – это мера способности вещества изменять поверхностное натяжение. Очевидно, что чем больше величина g, тем сильнее способность вещества понижать поверхностное натяжение.

Г рафически поверхностная активность может быть получена из изотермы поверхностного натяжения. Для этого к участку кривой, отвечающей минимальной концентрации растворенного вещества, проводится касательная до пересечения с осями.

Поверхностная активность равняется тангенсу угла (т. е. отношению приращения σ к приращению с):

g = tg

Для характеристики процессов адсорбции с ориентацией адсорбирующихся молекул (например, с ориентацией дифильных молекул ПАВ на поверхности раствора) вводится понятие работы адсорбции. Работа адсорбции в этом случае – это работа, которую совершает система при обратимом изотермическом переносе полярной и неполярной частей молекулы из объема фазы на межфазную поверхность:

, где W0 – работа по переносу полярной части; W – работа по переносу одной СН2-группы; n – число групп СН2.

По Ленгмюру: , где cv – равновесная концентрация в объеме.

В гомологическом ряду нормальных алифатических кислот поверхностная активность по отношению к воде резко возрастает, в среднем, в 3-3,5 раза на каждую группу –СН2.

3. Как влияет температура на термодинамические функции поверхностного слоя в однокомпонентных жидкостях на границе с собственным паром? Как экспериментально можно определить полную поверхностную энергию жидкости?

При постоянной температуре и давлении поверхностная энергия Гиббса определяется произведением поверхностного натяжения (фактор интенсивности)  на площадь поверхности (фактор емкости) s: GS=σs

П лотность поверхности зависит от ее кривизны и дисперсности фаз. Дисперсность D линейно связана с удельной поверхностью Sуд:

где V – объем дисперсной фазы, мл; k – коэффициент формы частиц; d-диаметр частицы, м2.

Поверхностное натяжение можно представить как энергию переноса молекул из объема тела на поверхность или как работу образования единицы поверхности. Поверхностное натяжение можно выразить частной производной от энергии Гиббса по величине межфазной поверхности при p и T=const (при постоянных числах молей компонентов):

(8)

Поверхностное натяжение жидкости, как и другие ее свойства, связанные с тепловым движением молекул, зависит от температуры. В самом деле, с повышением температуры увеличивается интенсивность теплового движения молекул, вследствие чего межмолекулярные силы ослабевают, и поверхностное натяжение падает. Поэтому температурный коэффициент чистой жидкости (p = const) всегда отрицателен. В области температур, далеких от критической, и, главным образом, для неассоциированных жидкостей σ изменяется с температурой линейно, и . У. Рамзай и П. Шильс для зависимости поверхностного натяжения от температуры приводят эмпирическое уравнение

, (1.11)

где К и а – постоянные величины, зависящие от природы жидкости; Ткр – критическая температура; Т – температура опыта.

Экспериментальные данные свидетельствуют, что при приближении температуры к Ткр наблюдаются отклонения от линейной зависимости  от Т.

Рассмотрим опыт Дюпре:

На проволочной рамке образуем мыльную пленку. Нижняя сторона рамки – подвижная и, если ничем не нагружена, поднимается вверх из-за стремления пленки сократиться, т. е. На рамку действует сила поверхностного натяжения Fп. Эту силу можно уравновесить грузиком весом Р = Fп. При увеличении веса груза на бесконечно малую величину происходит перемещение подвижной стороны рамки на dh Груз при этом совершает работу против силы Fп: .

Одновременно из-за увеличения поверхности пленки возрастает поверхностная энергия: (коэффициент 2 учитывает двусторонность пленки).

Так как , получаем: .

Таким образом, величина σ может рассматриваться не только как удельная поверхностная энергия, но и как сила, отнесенная к единице длины контура, ограничивающего поверхность.

4. Почему бумага впитывает воду, а плащевая ткань не промокает? Какое коллоидно-химическое явление лежит в основе этих процессов? Охарактеризуйте его.

Плащевая ткань может иметь следующий состав: полиэфир 100%, полиэфир + хлопок, полиамид + хлопок, полиэфир + вискоза. Содержание хлопка или вискозы приближает ее по гигиеническим показателям к натуральным тканям, сохраняя при этом лучшие свойства синтетики.

Изделия из смесовых тканей могут иметь масловодоотталкивающую пропитку, которая придает ткани высокие масло- и грязеотталкивающие свойства.

Щелочная отварка является основной операцией процесса подготовки хлопчатобумажных тканей. Назначение этого процесса заключается в удалении природных примесей целлюлозы, а также примесей, нанесенных на волокно в прядении и ткачестве. Одновременно с этим необходимо обеспечить равномерную и высокую смачивающую и сорбционную способность при максимальном сохранении исходных физико-механических свойств хлопкового волокна. Это достигается в результате происходящих при отварке сложных физических, химических и коллоидно-химических процессов, таких как адсорбция, диффузия, набухание, растворение, эмульгирование, гидролиз и окисление.

Эффективное удаление примесей целлюлозы и получение высокой капиллярности достигается лишь при горячих щелочных обработках. Гидрофобные свойства хлопка обусловлены наличием на наружной поверхности волокна пектиновых, азотсодержащих (белковых) и воскообразных примесей. В процессе отварки в волокне протекают следующие химические процессы.

Пектиновые вещества под действием щелочи при высокой температуре гидролизуются с образованием водорастворимых продуктов (пентозы, гексозы и др.)

Белковые соединения в щелочной среде гидролизуются, а образующиеся натриевые соли аминокислот не только способны переходить в раствор, но и являются хорошими эмульгаторами, способствующими интенсивному удалению воскообразных веществ и других загрязнений с поверхности волокна.

Воскообразные примеси, представляющие собой сложные эфиры высших кислот с жирными спиртами, частично гидролизуются под действием щелочи:

Выделяющиеся при этом, хотя и в незначительном количестве, жирные кислоты (пальмитиновая, стеариновая, олеиновая) под влиянием щелочи образуют натриевые соли – мыла, обладающие высокой поверхностной активностью, хорошей растворимостью в воде и высокой эмульгирующей способностью. Такие вещества называют поверхностно-активными (ПАВ), поскольку они способны снижать поверхностное натяжение на поверхности раздела фаз «варочная жидкость – воскообразные частицы». Молекулы ПАВ своими гидрофобными концами вступают в контакт с воскообразными примесями и полярными гидрофильными группами ориентируются в сторону варочного раствора. При этом расплавленная капля воска стягивается по периметру, превращаясь в шарообразную микрокаплю, удерживаемую поверхностью волокна в одной точке как это показано на рис.1.

волокно

Рис.1. Механизм эмульгирования воскообразных примесей

Эмульгированные поверхностно-активными веществами воскообразные частицы отрываются от поверхности волокна и переходят в раствор, образуя устойчивую эмульсионную систему. Путем омыления жировых веществ удаляется около 40% воскообразных примесей, остальные выводят из волокна введением в варочную жидкость дополнительного количества ПАВ. Последние должны обладать не только поверхностно-активными свойствами, но и высокой эмульгирующей способностью, то есть не вызывать слипания частиц и расслаивания эмульсии. ПАВ должны биологически расщепляться в сточных водах, обладать устойчивостью к действию высоких температур и быть сравнительно недорогими.

Экстрагированные из волокна примеси и образующиеся при отварке осадки гидроксидов металлов должны удерживаться в растворе и повторно не сорбироваться волокном.

Минеральные вещества, сопутствующие целлюлозе, при взаимодействии со щёлочью образуют гидраты, растворимые в воде, и удаляются при промывке.

В процессе отварки не исключена возможность каталитического окисления целлюлозы активным кислородом, так как при высокой температуре обработки кислород воздуха в присутствии щелочей образует перекисные соединения. Последние взаимодействуют с целлюлозой, в результате чего получается оксицеллюлоза. Об этом свидетельствует снижение вязкости медно-аммиачных растворов целлюлозы в процессе варки.

Данные теоретические предпосылки учитываются при реализации процесса отварки на практике. Так в состав варочной жидкости кроме гидроксида натрия (основного компонента, разрушающего практически все примеси) и ПАВ дополнительно вводят силикат натрия – Na2SiO3 и восстановители (традиционно бисульфит натрия – NaHSO3).

Силикат натрия адсорбирует продукты распада естественных примесей целлюлозы и тем самым устраняет возможность их повторного осаждения на волокно. Кроме того, он выступает в качестве защитного средства, препятствующего образованию на ткани осадков гидроксидов металлов в виде ржавых пятен. Последние образуются в варочной жидкости из компонентов, содержащихся в воде – солей железа, солей жёсткости и др. – в виде устойчивых коллоидных гидрозолей. Силикат натрия коагулирует их, превращая в грубодисперсные частицы, не способные сорбироваться волокном.

Восстановители в составе варочной жидкости выполняют две функции: защищают целлюлозу от окисляющего действия кислорода воздуха и способствуют удалению лигнина, содержащегося в механических примесях в виде «галочек». Помимо бисульфита натрия, в условиях непрерывных процессов отварки при высоких концентрациях щёлочи, в качестве восстановителей рекомендуют использовать ронгалит, диоксид тиомочевины, тиомочевину, сульфид натрия, а в последние годы – антрахинон и его производные.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]