Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Voprosy_matematika_2_kurs_1.doc
Скачиваний:
38
Добавлен:
25.04.2019
Размер:
1.8 Mб
Скачать

4. Линейные уравнения. Определение, методы решений, примеры

Линейные уравнения. ДУ первого порядка называется линейным, если неизвестная функция y(x) и её производная входят в уравнение в первой степени

(14)

Здесь p(x), q(x) - непрерывные функции. Для решения уравнения (14) представим y(x) в виде произведения двух новых неизвестных функций u(x) и v(x): y(x) = u(x) v(x). Тогда , и уравнение приводится к виду , или . Это уравнение решаем в два этапа: сначала находим функцию v(x) как частное решение уравнения с разделяющимися переменными ; затем находим u(x) из уравнения . Итак, (мы не вводим в это решение произвольную постоянную C, нам достаточно найти одну функцию v(x), обнуляющую слагаемое со скобками в уравнении ). Теперь уравнение для u(x) запишется как . Общее решение уравнения . Запоминать эту формулу не надо, лучше усвоить порядок действий и воспроизводить его при решении каждой задачи. Пример: . Решение: . Теперь для u(x) получим: , и общее решение уравнения . Для нахождения частного решения, соответствующего начальным условиям задачи Коши, подставим в общее решение . Решение задачи: . Этот метод решения линейных уравнений часто реализуется по-другому - в форме вариации произвольной постоянной. Уравнение (14) называется однородным, если q(x) = 0. Пусть дано неоднородное уравнение (14) . Оно, как и в предыдущем случае, решается в два этапа. Обнулим правую часть, получившееся уравнение будем называть однородным уравнением, соответствующим уравнению (14): . Решаем это уравнение: (при делении на y теряется решение y (x) = 0, но оно входит в общее решение при C = 0). Теперь ищем общее решение уравнения (14) в виде , где - новая неизвестная функция; находим производную и подставляем в (14) y и : , или , где . Теперь . Понятно, что обе реализации решения имеют один смысл (решение однородного уравнения играет роль функции v(x), варьируемая постоянная C(x) - роль функции u(x)). Отметим ещё одно важное обстоятельство. Переменные x и y, входящие в уравнение, равноправны, поэтому при определении типа уравнения надо иметь в виду, что может оказаться предпочтительней искать решение в виде x = x(y), а не в виде y = y(x). Пример: (x + y2)dy = ydx. Если мы представим это уравнение в виде , то решить его не сможем, так как оно не принадлежит ни одному из рассмотренных типов. Если же представить его в виде , то относительно функции x = x(y) оно линейно. Решаем его методом вариации произвольной постоянной. Соответствующее однородное уравнение: . Его решение: . Ищем решение данного уравнения в форме x = C(y) y. Тогда (постоянная C0 переобозначена как ). Утерянное решение - y = 0.

5. Уравнение Бернулли. Определение, методы решений, примеры

Уравнение Бернулли. Так называется уравнение

(15)

где (при m = 0 уравнение линейно, при m = 1 - с разделяющимися переменными). Это уравнение решается одним из следующих способов: 1. Уравнение Бернулли сводится к линейному подстановкой z = y1-m (при m>1 может быть потеряно решение y = 0). Действительно, , ; после деления уравнения (15) на ym получим , или - линейное уравнение. Пример: (уравнение Бернулли, m = 2). Подстановка . Решаем полученное линейное уравнение: . 2. Можно сразу решать уравнение Бернулли методом, которым решаются линейные уравнения, т.е. заменой y(x) = u(x) v(x): из этого выражения находим u(x), и y(x) = u(x) v(x). Пример: решить задачу Коши Как и в предыдущем примере, это уравнение не попадает ни под один из рассмотренных типов: оно не является ни уравнением с разделяющимися переменными (наличие суммы x2 + y), ни уравнением с однородной правой частью (слагаемые разных порядков - первого и второго в этой сумме), ни линейным, ни Бернулли (другая структура). Попробуем опять представим это уравнение как уравнение относительно x = x(y): Это уже уравнение Бернулли с m = -1. Начальное условие примет вид x(1) = 2. Решаем уравнение: . Тогда . Это общее решение уравнения (утерянное решение y = 0 не удовлетворяет начальному условию). Ищем частное решение, удовлетворяющее начальному условию: ; решение задачи Коши: .

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]