Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Bilety_Algebra.docx
Скачиваний:
1
Добавлен:
26.04.2019
Размер:
929.65 Кб
Скачать

Вопрос 45 (46) Производные и дифференциалы высших порядков

Пусть функция y = f ( x ) дифференцируема на некотором отрезке [ a , b ]. Значения производной f'(x) зависят от х, т.е. производная f'(x) тоже представляет собой некоторую функцию от х. Дифференцируя эту функцию, мы получаем производную от производной.

О. Производная от первой производной называется производной второго порядка или второй производной. Обозначается

y''=( f'( x ))'= f''( x ). (4.5)

Физический смысл второй производной: вторая производная f''(x) равна скорости изменения скорости, т.е. ускорению движущейся точки в момент времени х.

Вторая производная также может быть функцией, определенной на некотором множестве. Если эта функция имеет производную, то эта производная называется третьей производной функции f(x) и обозначается f'''(x).

О. Если определена ( n -1) -я производная f (n -1 ) (x) и существует её произ­водная, то она называется n-й производной функции f(x):

( n ) ( x ) = ( f ( n -1 ) ( x ))' . (4.6)

Все производные, начиная со второй, называются производными высших порядков.

Функцию, имеющую на данном множестве конечную производную порядка n , называют n раз дифференцируемой на данном множестве.

Дифференциал функции y = f ( x ) выражается в виде dy = f'( x ) dx . Тогда, если он является некоторой функцией от х, то справедливо следующее:

О. Дифференциал от дифференциала функции называется дифференциалом второго порядка или вторым дифференциалом:

2 y = f''( x ) dx 2 . (4.7)

О. Дифференциал от дифференциала n -го порядка называется дифференциалом ( n +1)-го порядка.

ПРИМЕНЕНИЕ ДИФФЕРЕНЦИАЛА К ПРИБЛИЖЕННЫМ ВЫЧИСЛЕНИЯМ

Пусть нам известно значение функции y0=f(x0) и ее производной y0' = f '(x0) в точке x0. Покажем, как найти значение функции в некоторой близкой точке x.

Как мы уже выяснили приращение функции Δyможно представить в виде суммы Δy=dy+α·Δx, т.е. приращение функции отличается от дифференциала на величину бесконечно малую. Поэтому, пренебрегая при малых Δx вторым слагаемым в приближенных вычислениях, иногда пользуются приближенным равенством Δydyили Δy»f'(x0)·Δx.

Т.к., по определению, Δy = f(x) – f(x0), то f(x) – f(x0)f'(x0)·Δx.

Откуда

f(x) ≈ f(x0) + f'(x0)·Δx

Примеры.

y = x2 – 2x. Найти приближенно, с помощью дифференциала, изменение y (т.е. Δy), когда x изменяется от 3 до 3,01.

Имеем Δydy=f'(x)·Δx.

f'(x)=2x – 2 ,f'(3)=4, Δx=0,01.

Поэтому Δy ≈ 4·0,01 = 0,04.

Вычислить приближенно значение функции   в точке x = 17.

Пусть x0= 16. Тогда Δx = x – x0= 17 – 16 = 1,  ,

.

Таким образом,  .

Вычислить ln 0,99.

Будем рассматривать это значение как частное значение функции y=lnx при х=0,99.

Положим x0 = 1. Тогда Δx = – 0,01, f(x0)=0.

f '(1)=1.Поэтому f(0,99) ≈ 0 – 0,01 = – 0,01.

Либо это http://www.sernam.ru/lect_math2.php?id=95

Вопрос 46 (47) График функции y=f(x) называется выпуклым на интервале (a; b), если он расположен ниже любой своей касательной на этом интервале.

График функции y=f(x) называется вогнутым на интервале (a; b), если он расположен выше любой своей касательной на этом интервале.

На рисунке показана кривая, выпуклая на (a; b) и вогнутая на (b; c).

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]