Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
1383.doc
Скачиваний:
31
Добавлен:
01.05.2019
Размер:
6.23 Mб
Скачать

2.7. Второе начало термодинамики

Анализ выражения для КПД показывает, что максимальный КПД, равный единице, возможен, если двигатель все получаемое количество тепла будет преобразовывать в работу. Все опытные факты свидетельствуют о невозможности создания такого двигателя (вечный двигатель второго рода), и это было сформулировано в виде второго начала термодинамики.

«Невозможен круговой процесс, единственным результатом которого было бы производство работы за счет охлаждения теплового резервуара».

Вильям Томсон (лорд Кельвин).

«Теплота не может самопроизвольно переходить от тела менее нагретого к телу более нагретому».

Рудольф Клаузиус.

Второе начало термодинамики не только установило границы преобразования тепла в работу, но и позволило построить рациональную шкалу температур (термодинамическая шкала температур) и установить направление процессов, происходящих в теплоизолированных системах.

2.8. Цикл Карно и теорема Карно

В 1824 г. С. Карно предложил и исследовал идеальный тепловой цикл, названный в последствии циклом Карно. Этот цикл состоит из двух изотерм и двух адиабат (рис. 21). Карно также сформулировал две теоремы, определяющие максимальное значение КПД теплового двигателя.

«Коэффициент полезного действия тепловой машины, работающей по циклу Карно, зависит только от температур Т1 и Т2 нагревателя и холодильника, но не зависит от устройства машины, а также от вида используемого рабочего вещества».

«Коэффициент полезного действия всякой тепловой машины не может превосходить коэффициента полезного действия идеальной машины, работающей по циклу Карно с теми же самыми температурами нагревателя и холодильника».

Рис. 21

12, 34, – изотермические расширение и сжатие,

23, 41– адиабатические расширение и сжатие.

В процессе 12 , поэтому

Q1 = .

В процессе 34 U = const, поэтому

.

Используя уравнения для адиабатического процесса, можно показать, что . Тогда

.

2.9. Термодинамическое неравенство Клаузиуса. Энтропия

Рассматривая процессы превращения тепла в работу, Р. Клаузиус сформулировал термодинамическое неравенство (неравенство Клаузиуса): «Приведенное количество тепла, полученное системой в ходе произвольного кругового процесса, не может быть больше нуля».

где Q – количество тепла, полученное системой при температуре Т, Q1  количество тепла, получаемое системой от участков окружающей среды с температурой Т1, Q2 – количество тепла, отдаваемое системой участкам окружающей среды при температуре Т2. Неравенство Клаузиуса позволяет установить верхний предел термического КПД при переменных температурах нагревателя и холодильника.

,

где Т1 макс – максимальная температура участка среды, от которого система получает тепло; Т2 мин – минимальная температура участка среды, которому система отдает тепло.

Из выражения для обратимого цикла Карно следует, что или , т.е. для обратимого цикла неравенство Клаузиуса переходит в равенство. Это означает, что приведенное количество тепла, полученное системой в ходе обратимого процесса, не зависит от вида процесса, а определяется только начальным и конечным состояниями системы. Поэтому приведенное количество тепла, полученное системой в ходе обратимого процесса, служит мерой изменения функции состояния системы, называемой энтропией.

Энтропия системы – функция ее состояния, определенная с точностью до произвольной постоянной. Приращение энтропии равно приведенному количеству тепла, которое нужно сообщить системе, чтобы перевести ее из начального состояния в конечное по любому обратимому процессу.

, .

Важной особенностью энтропии является ее возрастание в изолированных системах (закон возрастания энтропии): «Энтропия теплоизолированной (адиабатической) системы не может убывать; она возрастает, если в системе идет необратимый процесс, и остается постоянной при обратимом процессе в системе».

Необратимые процессы в системе приводят к установлению равновесного состояния. В этом состоянии энтропия изолированной системы достигает максимума и в дальнейшем никакие макроскопические процессы в системе невозможны.

Изменение энтропии при наличии теплообмена с окружающей средой, может быть каким угодно: как больше нуля, так и меньше нуля.

Получим выражение для приращения энтропии идеального газа при переходе из состояния с параметрами T1, V1 в состояние с параметрами T2, V2 :

.

Из выражения для приращения энтропии газа следует, что энтропия является функцией двух параметров  температуры и объема S=S(T,V).

Введение энтропии позволяет объединить первое и второе начала термодинамики в виде термодинамического неравенства

,

где знак равенства относится к обратимым процессам, знак неравенства  к необратимым. Энтропия, как и внутренняя энергия, связана с микроскопическим строением системы и статистическим характером теплового движения частиц системы.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]